Diese Strategie nutzt die Kombinationssignale mehrerer technischer Indikatoren, um die zugrunde liegenden Vermögenswerte wie Aktien und Kryptowährungen dynamisch zu handeln.
Diese Strategie nutzt hauptsächlich gleitende Durchschnitte, den Relative Strength Index (RSI), den Average True Range (ATR) und den Directional Movement Index (ADX), um Handelssignale zu generieren.
Das System wird von den verschiedenen Anwendungen des Systems verwendet, um die Trends zu identifizieren. Das System wird von den verschiedenen Anwendungen des Systems verwendet, um die Trends zu identifizieren.
Neben doppelten MAs wird der RSI eingeführt, um die Trendsignale zu bestätigen und falsche Ausbrüche zu vermeiden. Der RSI beurteilt die Marktstärke anhand der Divergenz zwischen der schnellen und der langsamen Linie. Wenn der RSI über 30 bricht, wird ein Kaufsignal generiert. Wenn er unter 70 bricht, wird ein Verkaufssignal generiert.
Darüber hinaus wird ATR verwendet, um das Stop-Loss-Niveau automatisch anzupassen. ATR kann die Volatilität der Märkte effektiv widerspiegeln. Wenn die Volatilität steigt, wird ein breiterer Stop-Loss eingestellt, um die Wahrscheinlichkeit zu reduzieren, dass er gestoppt wird.
Der ADX misst schließlich die Stärke des Trends. ADX verwendet die Divergenz zwischen dem positiven Indikator DI+ und dem negativen Indikator DI- zur Messung der Trendstärke. Nur wenn der ADX über 20 bricht, gilt der Trend als etabliert und tatsächliche Handelssignale werden generiert.
Durch die Kombination von Signalen aus mehreren Indikatoren kann die Strategie umsichtiger sein, um Handelssignale zu senden, die Störung durch falsche Signale zu vermeiden und somit eine höhere Gewinnrate zu erzielen.
Zu den Vorteilen dieser Strategie gehören:
Die Kombination von MA, RSI, ATR, ADX und mehr kann die Genauigkeit verbessern und fehlerhafte Beurteilungen aufgrund eines einzigen Indikators vermeiden.
Die Anpassung des Stop-Loss an die Marktvolatilität kann die Wahrscheinlichkeit eines Stopps reduzieren und die Risiken wirksam managen.
Durch die Beurteilung der Trendstärke mit ADX vor dem tatsächlichen Handel können Verluste aus dem Handel gegen Trends reduziert werden.
Parameter wie MA-Länge, RSI-Länge, ATR-Periode und ADX-Periode können für verschiedene Märkte angepasst und optimiert werden.
Durch die Ermittlung langfristiger Trends mit Hilfe des schnellen und langsamen MA-Systems und die Verringerung von kurzfristigen Geräuschen mit Indikatoren wie dem RSI wird eine langfristige Trendhaltung für höhere Gewinne möglich.
Es gibt auch einige Risiken, die mit dieser Strategie verbunden sind:
Mehr Parameter bedeuten größere Schwierigkeiten bei der Optimierung. Unpassende Parameter-Sätze können die Strategieleistung beeinträchtigen.
Alle technischen Indikatoren haben anwendbare Marktzustände. Wenn die Märkte in besondere Zustände eintreten, können die verwendeten Indikatoren gleichzeitig ausfallen. Die Risiken solcher BLACK SWAN-Ereignisse bedürfen von Aufmerksamkeit.
Die Strategie erlaubt den Short-Handel. Kurze Positionen haben inhärent das Risiko unbegrenzter Verluste. Dies kann durch richtige Stop-Loss-Einstellungen reduziert werden.
Die Indikatoren können nicht sofort auf Umkehrungen reagieren. Falsche Richtungspositionen verursachen häufig Verluste bei Umkehrungen. Die Verkürzung der Parameter einiger Indikatoren kann die Empfindlichkeit verbessern.
Es gibt Raum für weitere Optimierungen:
Analyse der Zusammenhänge zwischen Indikatoren und Marktzuständen und Konstruktionsmechanismen zur dynamischen Anpassung der Indikatorgewichte anhand veränderter Marktbedingungen zur Verbesserung der Entscheidungen.
Verwenden Sie Deep-Learning-Modelle, um Kursbewegungen vorherzusagen und das regelbasierte System zu erweitern, um die Genauigkeit zu verbessern.
Konzipieren Sie adaptive Abstimmungsmodule für Indikatorparameter, die auf historischen Daten aus Gleitfenstern basieren, damit sich die Strategie besser anpassen kann.
Integration von Variablen-Perioden-Analysen wie Elliott-Wellen-Theorie, um mittelfristige und langfristige Trends zu beurteilen und die Rentabilität zu verbessern.
Zusammenfassend lässt sich sagen, dass diese Strategie MA, RSI, ATR, ADX und mehr in ein relativ umfassendes System integriert, das über das MA-System längerfristige Trends identifizieren und die Lärmstörungen bei kurzfristigen Indikatoren wie RSI reduzieren kann.
/*backtest start: 2023-01-28 00:00:00 end: 2024-02-03 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code to my testing // © sgb //@version=5 strategy(title='Soren test 2', overlay=true, initial_capital=100, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.percent_of_equity, default_qty_value=50, commission_value=0.04) //SOURCE ============================================================================================================================================================================================================================================================================================================= src = input(open) // INPUTS ============================================================================================================================================================================================================================================================================================================ //ADX -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ADX_options = input.string('MASANAKAMURA', title='Adx Type', options=['CLASSIC', 'MASANAKAMURA'], group='ADX') ADX_len = input.int(38, title='Adx lenght', minval=1, group='ADX') th = input.float(23, title='Adx Treshold', minval=0, step=0.5, group='ADX') // Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ volume_f = input.float(1.2, title='Volume mult.', minval=0, step=0.1, group='Volume') sma_length = input.int(35, title='Volume lenght', minval=1, group='Volume') //RSI---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- len_3 = input.int(25, title='RSI lenght', group='Relative Strenght Indeks') src_3 = input.source(low, title='RSI Source', group='Relative Strenght Indeks') RSI_VWAP_length = input(25, title='Rsi vwap lenght') // Range Filter --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- per_ = input.int(26, title='SAMPLING PERIOD', minval=1, group='Range Filter') mult = input.float(2.3, title='RANGE MULTIPLIER', minval=0.1, step=0.1, group='Range Filter') // Cloud -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- len = input.int(1, title='Cloud Length', group='Cloud') //RMI ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- RMI_len = input.int(26, title='Rmi Lenght', minval=1, group='Relative Momentum Index') mom = input.int(17, title='Rmi Momentum', minval=1, group='Relative Momentum Index') RMI_os = input.int(33, title='Rmi oversold', minval=0, group='Relative Momentum Index') RMI_ob = input.int(68, title='Rmi overbought', minval=0, group='Relative Momentum Index') // Indicators Calculations ======================================================================================================================================================================================================================================================================================================== // Range Filter ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- var bool L_RF = na var bool S_RF = na Range_filter(_src, _per_, _mult) => var float _upward = 0.0 var float _downward = 0.0 wper = _per_ * 2 - 1 avrng = ta.ema(math.abs(_src - _src[1]), _per_) _smoothrng = ta.ema(avrng, wper) * _mult _filt = _src _filt := _src > nz(_filt[1]) ? _src - _smoothrng < nz(_filt[1]) ? nz(_filt[1]) : _src - _smoothrng : _src + _smoothrng > nz(_filt[1]) ? nz(_filt[1]) : _src + _smoothrng _upward := _filt > _filt[1] ? nz(_upward[1]) + 1 : _filt < _filt[1] ? 0 : nz(_upward[1]) _downward := _filt < _filt[1] ? nz(_downward[1]) + 1 : _filt > _filt[1] ? 0 : nz(_downward[1]) [_smoothrng, _filt, _upward, _downward] [smoothrng, filt, upward, downward] = Range_filter(src, per_, mult) hband = filt + smoothrng lband = filt - smoothrng L_RF := high > hband and upward > 0 S_RF := low < lband and downward > 0 //ADX------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- calcADX(_len) => up = ta.change(high) down = -ta.change(low) plusDM = na(up) ? na : up > down and up > 0 ? up : 0 minusDM = na(down) ? na : down > up and down > 0 ? down : 0 truerange = ta.rma(ta.tr, _len) _plus = fixnan(100 * ta.rma(plusDM, _len) / truerange) _minus = fixnan(100 * ta.rma(minusDM, _len) / truerange) sum = _plus + _minus _adx = 100 * ta.rma(math.abs(_plus - _minus) / (sum == 0 ? 1 : sum), _len) [_plus, _minus, _adx] calcADX_Masanakamura(_len) => SmoothedTrueRange = 0.0 SmoothedDirectionalMovementPlus = 0.0 SmoothedDirectionalMovementMinus = 0.0 TrueRange = math.max(math.max(high - low, math.abs(high - nz(close[1]))), math.abs(low - nz(close[1]))) DirectionalMovementPlus = high - nz(high[1]) > nz(low[1]) - low ? math.max(high - nz(high[1]), 0) : 0 DirectionalMovementMinus = nz(low[1]) - low > high - nz(high[1]) ? math.max(nz(low[1]) - low, 0) : 0 SmoothedTrueRange := nz(SmoothedTrueRange[1]) - nz(SmoothedTrueRange[1]) / _len + TrueRange SmoothedDirectionalMovementPlus := nz(SmoothedDirectionalMovementPlus[1]) - nz(SmoothedDirectionalMovementPlus[1]) / _len + DirectionalMovementPlus SmoothedDirectionalMovementMinus := nz(SmoothedDirectionalMovementMinus[1]) - nz(SmoothedDirectionalMovementMinus[1]) / _len + DirectionalMovementMinus DIP = SmoothedDirectionalMovementPlus / SmoothedTrueRange * 100 DIM = SmoothedDirectionalMovementMinus / SmoothedTrueRange * 100 DX = math.abs(DIP - DIM) / (DIP + DIM) * 100 adx = ta.sma(DX, _len) [DIP, DIM, adx] [DIPlusC, DIMinusC, ADXC] = calcADX(ADX_len) [DIPlusM, DIMinusM, ADXM] = calcADX_Masanakamura(ADX_len) DIPlus = ADX_options == 'CLASSIC' ? DIPlusC : DIPlusM DIMinus = ADX_options == 'CLASSIC' ? DIMinusC : DIMinusM ADX = ADX_options == 'CLASSIC' ? ADXC : ADXM L_adx = DIPlus > DIMinus and ADX > th S_adx = DIPlus < DIMinus and ADX > th // Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Volume_condt = volume > ta.sma(volume, sma_length) * volume_f //RSI------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ up_3 = ta.rma(math.max(ta.change(src_3), 0), len_3) down_3 = ta.rma(-math.min(ta.change(src_3), 0), len_3) rsi_3 = down_3 == 0 ? 100 : up_3 == 0 ? 0 : 100 - 100 / (1 + up_3 / down_3) L_rsi = rsi_3 < 70 S_rsi = rsi_3 > 30 RSI_VWAP = ta.rsi(ta.vwap(close), RSI_VWAP_length) RSI_VWAP_overSold = 13 RSI_VWAP_overBought = 68 L_VAP = ta.crossover(RSI_VWAP, RSI_VWAP_overSold) S_VAP = ta.crossunder(RSI_VWAP, RSI_VWAP_overBought) //Cloud -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- PI = 2 * math.asin(1) hilbertTransform(src) => 0.0962 * src + 0.5769 * nz(src[2]) - 0.5769 * nz(src[4]) - 0.0962 * nz(src[6]) computeComponent(src, mesaPeriodMult) => hilbertTransform(src) * mesaPeriodMult computeAlpha(src, fastLimit, slowLimit) => mesaPeriod = 0.0 mesaPeriodMult = 0.075 * nz(mesaPeriod[1]) + 0.54 smooth = 0.0 smooth := (4 * src + 3 * nz(src[1]) + 2 * nz(src[2]) + nz(src[3])) / 10 detrender = 0.0 detrender := computeComponent(smooth, mesaPeriodMult) I1 = nz(detrender[3]) Q1 = computeComponent(detrender, mesaPeriodMult) jI = computeComponent(I1, mesaPeriodMult) jQ = computeComponent(Q1, mesaPeriodMult) I2 = 0.0 Q2 = 0.0 I2 := I1 - jQ Q2 := Q1 + jI I2 := 0.2 * I2 + 0.8 * nz(I2[1]) Q2 := 0.2 * Q2 + 0.8 * nz(Q2[1]) Re = I2 * nz(I2[1]) + Q2 * nz(Q2[1]) Im = I2 * nz(Q2[1]) - Q2 * nz(I2[1]) Re := 0.2 * Re + 0.8 * nz(Re[1]) Im := 0.2 * Im + 0.8 * nz(Im[1]) if Re != 0 and Im != 0 mesaPeriod := 2 * PI / math.atan(Im / Re) mesaPeriod if mesaPeriod > 1.5 * nz(mesaPeriod[1]) mesaPeriod := 1.5 * nz(mesaPeriod[1]) mesaPeriod if mesaPeriod < 0.67 * nz(mesaPeriod[1]) mesaPeriod := 0.67 * nz(mesaPeriod[1]) mesaPeriod if mesaPeriod < 6 mesaPeriod := 6 mesaPeriod if mesaPeriod > 50 mesaPeriod := 50 mesaPeriod mesaPeriod := 0.2 * mesaPeriod + 0.8 * nz(mesaPeriod[1]) phase = 0.0 if I1 != 0 phase := 180 / PI * math.atan(Q1 / I1) phase deltaPhase = nz(phase[1]) - phase if deltaPhase < 1 deltaPhase := 1 deltaPhase alpha = fastLimit / deltaPhase if alpha < slowLimit alpha := slowLimit alpha [alpha, alpha / 2.0] er = math.abs(ta.change(src, len)) / math.sum(math.abs(ta.change(src)), len) [a, b] = computeAlpha(src, er, er * 0.1) mama = 0.0 mama := a * src + (1 - a) * nz(mama[1]) fama = 0.0 fama := b * mama + (1 - b) * nz(fama[1]) alpha = math.pow(er * (b - a) + a, 2) kama = 0.0 kama := alpha * src + (1 - alpha) * nz(kama[1]) L_cloud = kama > kama[1] S_cloud = kama < kama[1] // RMI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- RMI(len, m) => up = ta.ema(math.max(close - close[m], 0), len) dn = ta.ema(math.max(close[m] - close, 0), len) RMI = dn == 0 ? 0 : 100 - 100 / (1 + up / dn) RMI L_rmi = ta.crossover(RMI(RMI_len, mom), RMI_os) S_rmi = ta.crossunder(RMI(RMI_len, mom), RMI_ob) //STRATEGY ========================================================================================================================================================================================================================================================================================================== L_1 = L_VAP and L_RF and not S_adx S_1 = S_VAP and S_RF and not L_adx L_2 = L_adx and Volume_condt and L_rsi and L_cloud S_2 = S_adx and Volume_condt and S_rsi and S_cloud L_3 = L_rmi and L_RF and not S_adx S_3 = S_rmi and S_RF and not L_adx L_basic_condt = L_1 or L_2 or L_3 S_basic_condt = S_1 or S_2 or S_3 var bool longCondition = na var bool shortCondition = na var float last_open_longCondition = na var float last_open_shortCondition = na var int last_longCondition = 0 var int last_shortCondition = 0 longCondition := L_basic_condt shortCondition := S_basic_condt last_open_longCondition := longCondition ? close : nz(last_open_longCondition[1]) last_open_shortCondition := shortCondition ? close : nz(last_open_shortCondition[1]) last_longCondition := longCondition ? time : nz(last_longCondition[1]) last_shortCondition := shortCondition ? time : nz(last_shortCondition[1]) in_longCondition = last_longCondition > last_shortCondition in_shortCondition = last_shortCondition > last_longCondition // SWAP-SL --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- var int last_long_sl = na var int last_short_sl = na sl = input.float(2, 'Swap % period', minval=0, step=0.1, group='strategy settings') long_sl = ta.crossunder(low, (1 - sl / 100) * last_open_longCondition) and in_longCondition and not longCondition short_sl = ta.crossover(high, (1 + sl / 100) * last_open_shortCondition) and in_shortCondition and not shortCondition last_long_sl := long_sl ? time : nz(last_long_sl[1]) last_short_sl := short_sl ? time : nz(last_short_sl[1]) var bool CondIni_long_sl = 0 CondIni_long_sl := long_sl ? 1 : longCondition ? -1 : nz(CondIni_long_sl[1]) var bool CondIni_short_sl = 0 CondIni_short_sl := short_sl ? 1 : shortCondition ? -1 : nz(CondIni_short_sl[1]) Final_Long_sl = long_sl and nz(CondIni_long_sl[1]) == -1 and in_longCondition and not longCondition Final_Short_sl = short_sl and nz(CondIni_short_sl[1]) == -1 and in_shortCondition and not shortCondition var int sectionLongs = 0 sectionLongs := nz(sectionLongs[1]) var int sectionShorts = 0 sectionShorts := nz(sectionShorts[1]) // RE-ENTRY --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- if longCondition or Final_Long_sl sectionLongs += 1 sectionShorts := 0 sectionShorts if shortCondition or Final_Short_sl sectionLongs := 0 sectionShorts += 1 sectionShorts var float sum_long = 0.0 var float sum_short = 0.0 if longCondition sum_long := nz(last_open_longCondition) + nz(sum_long[1]) sum_short := 0.0 sum_short if Final_Long_sl sum_long := (1 - sl / 100) * last_open_longCondition + nz(sum_long[1]) sum_short := 0.0 sum_short if shortCondition sum_short := nz(last_open_shortCondition) + nz(sum_short[1]) sum_long := 0.0 sum_long if Final_Short_sl sum_long := 0.0 sum_short := (1 + sl / 100) * last_open_shortCondition + nz(sum_short[1]) sum_short var float Position_Price = 0.0 Position_Price := nz(Position_Price[1]) Position_Price := longCondition or Final_Long_sl ? sum_long / sectionLongs : shortCondition or Final_Short_sl ? sum_short / sectionShorts : na //TP_1 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- tp = input.float(1.2, 'Tp-1 ', minval=0, step=0.1, group='strategy settings') long_tp = ta.crossover(high, (1 + tp / 100) * fixnan(Position_Price)) and in_longCondition and not longCondition short_tp = ta.crossunder(low, (1 - tp / 100) * fixnan(Position_Price)) and in_shortCondition and not shortCondition var int last_long_tp = na var int last_short_tp = na last_long_tp := long_tp ? time : nz(last_long_tp[1]) last_short_tp := short_tp ? time : nz(last_short_tp[1]) Final_Long_tp = long_tp and last_longCondition > nz(last_long_tp[1]) Final_Short_tp = short_tp and last_shortCondition > nz(last_short_tp[1]) fixnan_1 = fixnan(Position_Price) ltp = Final_Long_tp ? fixnan_1 * (1 + tp / 100) : na fixnan_2 = fixnan(Position_Price) stp = Final_Short_tp ? fixnan_2 * (1 - tp / 100) : na if Final_Short_tp or Final_Long_tp sum_long := 0.0 sum_short := 0.0 sectionLongs := 0 sectionShorts := 0 sectionShorts if Final_Long_tp CondIni_long_sl == 1 if Final_Short_tp CondIni_short_sl == 1 // COLORS & PLOTS -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ADX_COLOR = L_adx ? color.lime : S_adx ? color.red : color.orange barcolor(color=ADX_COLOR) hbandplot = plot(hband, title='RF HT', color=ADX_COLOR, transp=50) lbandplot = plot(lband, title='RF LT', color=ADX_COLOR, transp=50) fill(hbandplot, lbandplot, title='RF TR', color=ADX_COLOR, transp=90) plotshape(longCondition, title='Long', style=shape.triangleup, location=location.belowbar, color=color.new(color.blue, 0), size=size.tiny) plotshape(shortCondition, title='Short', style=shape.triangledown, location=location.abovebar, color=color.new(color.red, 0), size=size.tiny) plot(ltp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false) plot(stp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false) //BACKTESTING-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Q = 50 SL = input.float(0.4, 'StopLoss ', minval=0, step=0.1) strategy.entry('long', strategy.long, when=longCondition) strategy.entry('short', strategy.short, when=shortCondition) strategy.exit('TP', 'long', qty_percent=Q, limit=fixnan(Position_Price) * (1 + tp / 100)) strategy.exit('TP', 'short', qty_percent=Q, limit=fixnan(Position_Price) * (1 - tp / 100)) strategy.exit('SL', 'long', stop=fixnan(Position_Price) * (1 - SL / 100)) strategy.exit('SL', 'short', stop=fixnan(Position_Price) * (1 + SL / 100)) // // // // // // // By SGB