Der Kerngedanke dieser Strategie ist es, mit den zentralen Punkten zu handeln. Sie sucht nach wichtigen zentralen Höhen und Tiefen und handelt umgekehrt, wenn der Preis diese wichtigen Punkte durchbricht.
Die Strategie definiert zunächst die Funktionen pivotHighSig und pivotLowSig, die nach den Höhen und Tiefen der Achse suchen.
Insbesondere bei den Hubhöhen sucht es nach mehreren aufeinanderfolgenden höheren Höhen auf der linken Seite und nach mehreren aufeinanderfolgenden niedrigeren Höhen auf der rechten Seite.
Nachdem die Höhe und Tiefe der Achse gefunden wurden, wählt die Strategie die Höhe und Tiefe der Achse weiter aus, d.h. die wichtigen Punkte in der Achse. Dies wird durch die Definition mehrerer historischer Variablen wie ph1, ph2 usw. der Höhe und Tiefe der Achse erreicht.
Schließlich wird ein Umkehrhandel durchgeführt, wenn der Preis den Kernpunkt der Phasenachse durchbricht.
Die Quantifizierungsstrategie basiert auf den zentralen Achsen und bietet folgende Vorteile:
Die Strategie birgt auch einige Risiken:
Diese Strategie kann auch in folgenden Bereichen optimiert werden:
Die Strategie hat sich insgesamt gut entwickelt, wobei die Kernidee darin besteht, wichtige Kernen zu finden und bei ihrem Durchbruch umzukehren. Durch weitere Optimierung kann die Strategie zu stabileren und zuverlässigeren Signalen führen, was zu guten Erträgen führt.
/*backtest start: 2023-02-13 00:00:00 end: 2024-02-19 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy("Pivot of Pivot Reversal Strategy [QuantNomad]", shorttitle = "PoP Reversal Strategy [QN]", overlay=true) // Inputs leftBars = input(4, title = 'PP Left Bars') rightBars = input(2, title = 'PP Right Bars') atr_length = input(14, title = 'ATR Length') atr_mult = input(0.1, title = 'ATR Mult') // Pivot High Significant Function pivotHighSig(left, right) => pp_ok = true atr = atr(atr_length) for i = 1 to left if (high[right] < high[right+i] + atr * atr_mult) pp_ok := false for i = 0 to right-1 if (high[right] < high[i] + atr * atr_mult) pp_ok := false pp_ok ? high[right] : na // Pivot Low Significant Function pivotLowSig(left, right) => pp_ok = true atr = atr(atr_length) for i = 1 to left if (low[right] > low[right+i] - atr * atr_mult) pp_ok := false for i = 0 to right-1 if (low[right] > low[i] - atr * atr_mult) pp_ok := false pp_ok ? low[right] : na swh = pivotHighSig(leftBars, rightBars) swl = pivotLowSig (leftBars, rightBars) swh_cond = not na(swh) hprice = 0.0 hprice := swh_cond ? swh : hprice[1] le = false le := swh_cond ? true : (le[1] and high > hprice ? false : le[1]) swl_cond = not na(swl) lprice = 0.0 lprice := swl_cond ? swl : lprice[1] se = false se := swl_cond ? true : (se[1] and low < lprice ? false : se[1]) // Pivots of pivots ph1 = 0.0 ph2 = 0.0 ph3 = 0.0 pl1 = 0.0 pl2 = 0.0 pl3 = 0.0 pphprice = 0.0 pplprice = 0.0 ph3 := swh_cond ? nz(ph2[1]) : nz(ph3[1]) ph2 := swh_cond ? nz(ph1[1]) : nz(ph2[1]) ph1 := swh_cond ? hprice : nz(ph1[1]) pl3 := swl_cond ? nz(pl2[1]) : nz(pl3[1]) pl2 := swl_cond ? nz(pl1[1]) : nz(pl2[1]) pl1 := swl_cond ? lprice : nz(pl1[1]) pphprice := swh_cond and ph2 > ph1 and ph2 > ph3 ? ph2 : nz(pphprice[1]) pplprice := swl_cond and pl2 < pl1 and pl2 < pl3 ? pl2 : nz(pplprice[1]) if (le) strategy.entry("PP_RevLE", strategy.long, comment="PP_RevLE", stop=pphprice + syminfo.mintick) if (se) strategy.entry("PP_RevSE", strategy.short, comment="PP_RevSE", stop=pplprice - syminfo.mintick) // Plotting plot(lprice, color = color.red, transp = 55) plot(hprice, color = color.green, transp = 55) plot(pplprice, color = color.red, transp = 0, linewidth = 2) plot(pphprice, color = color.green, transp = 0, linewidth = 2)