Die Ressourcen sind geladen. Beförderung...

Dynamischer RSI-Oszillator Polynomial Fitting Indicator Trend Quantitative Handelsstrategie

Schriftsteller:ChaoZhang, Datum: 2024-12-11 15:32:23
Tags:RSIDRSIQR-NummerEMARMSEMSE

img

Diese Strategie ist ein quantitatives Handelssystem, das auf dem dynamischen Oszillator des RSI basiert. Durch die Durchführung von Polynomial-Fitting und Zeitreihenanalysen auf dem RSI-Indikator berechnet sie die Veränderungsrate des RSI, um die Marktdynamik zu erfassen.

Strategieprinzip

Der Kern der Strategie ist der Delta-RSI-Oszillator, der in folgenden Schritten umgesetzt wird:

  1. Berechnen Sie zuerst den traditionellen RSI-Indikator als Basisdaten
  2. Verwenden Sie Polynomial-Fitting, um RSI zu glätten und Lärm zu reduzieren
  3. Berechnen Sie die Zeitderivative des RSI, um den Delta-RSI zu erhalten, der die Veränderungsrate des RSI widerspiegelt
  4. Vergleichen Sie den Delta-RSI mit seinem gleitenden Durchschnitt, um Handelssignale zu erzeugen
  5. Verwenden Sie den Quadratfehler (RMSE) zur Bewertung und Filterung der Passqualität

Handelssignale können auf drei Arten erzeugt werden:

  • Nulllinieüberschreitung: Lang, wenn Delta-RSI von negativ zu positiv wird, kurz, wenn es von positiv zu negativ wird
  • Überschreitung der Signallinie: Lang/Kurz, wenn der Delta-RSI über/unter seinem gleitenden Durchschnitt überschreitet
  • Richtungsänderung: Lang, wenn der Delta-RSI im negativen Bereich steigt, kurz, wenn er im positiven Bereich fällt

Strategische Vorteile

  1. Solides mathematisches Fundament: Verwendet fortschrittliche mathematische Methoden wie QR-Zersetzung für die Signalverarbeitung
  2. Signalabgleichung: Polynomial-Fitting kann Marktlärm effektiv filtern und die Signalausstattung verbessern
  3. Hohe Flexibilität: bietet mehrere Signalgenerierungsmethoden und Parameterwahlmöglichkeiten, um sich an unterschiedliche Marktbedingungen anzupassen
  4. Kontrollierbares Risiko: Einschließlich RMSE-Filtermechanismus zur Abgrenzung zuverlässigerer Signale
  5. Rechenleistung: Matrixoperationen verwenden optimierte Algorithmen für eine hohe Laufleistung

Strategische Risiken

  1. Parameterempfindlichkeit: Mehrere Schlüsselparameter müssen sorgfältig angepasst werden, eine schlechte Parameterwahl beeinträchtigt die Strategieleistung ernsthaft
  2. Verzögerung: Signalvergleich führt zu einer Verzögerung, kann schnelle Marktbewegungen verpassen
  3. Falsche Ausbrüche: Kann falsche Signale in schwankenden Märkten erzeugen, was die Handelskosten erhöht
  4. Rechenkomplexität: Viele Matrixoperationen, möglicherweise Leistungsengpässe beim Hochfrequenzhandel
  5. Überanpassung: Bei der Optimierung von Parametern muss eine Überanpassung historischer Daten vermieden werden

Strategieoptimierungsrichtlinien

  1. Adaptive Parameter: Dynamische Anpassung des RSI-Zeitraums und der entsprechenden Reihenfolge anhand der Marktvolatilität
  2. Mehrfache Zeitrahmen: Einbeziehung von Signalen aus mehreren Zeitrahmen für die Quervalidierung
  3. Volatilitätsfilterung: Hinzufügen von Volatilitätsindikatoren wie ATR für die Signalfilterung
  4. Marktklassifizierung: Verwenden Sie unterschiedliche Regeln für die Erzeugung von Signalen für verschiedene Marktzustände (Trend/Oszillation)
  5. Stop-Loss-Optimierung: Hinzufügen intelligenter Stop-Loss-Mechanismen, wie dynamische Stops basierend auf Support-/Widerstandsniveaus

Zusammenfassung

Dies ist eine vollständige quantitative Handelsstrategie mit solider theoretischer Grundlage. Durch die Analyse der dynamischen Eigenschaften des RSI® in Kombination mit modernen mathematischen Methoden zur Signalverarbeitung kann es die Markttrends effektiv erfassen. Während es einige Probleme mit Parameterempfindlichkeit und Rechenkomplexität gibt, hat die Strategie durch die richtige Parameterwahl und Optimierungsverbesserungen einen guten praktischen Wert. Beim Live-Handel wird empfohlen, auf die Risikokontrolle zu achten, angemessene Positionsgrößen festzulegen und die Strategieleistung kontinuierlich zu überwachen.


/*backtest
start: 2024-11-10 00:00:00
end: 2024-12-09 08:00:00
period: 4h
basePeriod: 4h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © tbiktag
//
// Delta-RSI Oscillator Strategy
//
// A strategy that uses Delta-RSI Oscillator (© tbiktag) as a stand-alone indicator:
// https://www.tradingview.com/script/OXQVFTQD-Delta-RSI-Oscillator/
//
// Delta-RSI is a smoothed time derivative of the RSI, plotted as a histogram 
// and serving as a momentum indicator. 
// 
// Input parameters:
// RSI Length: The timeframe of the RSI that serves as an input to D-RSI.
// Length: The length of the lookback frame used for local regression.
// Polynomial Order: The order of the local polynomial function used to interpolate the RSI.
// Signal Length: The length of a EMA of the D-RSI series that is used as a signal line.
// Trade signals are generated based on three optional conditions:
// - Zero-crossing: bullish when D-RSI crosses zero from negative to positive values (bearish otherwise)
// - Signal Line Crossing: bullish when D-RSI crosses from below to above the signal line (bearish otherwise)
// - Direction Change: bullish when D-RSI was negative and starts ascending (bearish otherwise)
//
// Since D-RSI oscillator is based on polynomial fitting of the RSI curve, there is also an option
// to filter trade signal by means of the root mean-square error of the fit (normalized by the sample average).
// 
//@version=5
strategy(title='Delta-RSI Oscillator Strategy-QuangVersion', shorttitle='D-RSI-Q', overlay=true)

// ---Subroutines---
matrix_get(_A, _i, _j, _nrows) =>
    // Get the value of the element of an implied 2d matrix
    //input: 
    // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _i :: integer: row number
    // _j :: integer: column number
    // _nrows :: integer: number of rows in the implied 2d matrix
    array.get(_A, _i + _nrows * _j)

matrix_set(_A, _value, _i, _j, _nrows) =>
    // Set a value to the element of an implied 2d matrix
    //input: 
    // _A :: array, changed on output: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _value :: float: the new value to be set
    // _i :: integer: row number
    // _j :: integer: column number
    // _nrows :: integer: number of rows in the implied 2d matrix
    array.set(_A, _i + _nrows * _j, _value)

transpose(_A, _nrows, _ncolumns) =>
    // Transpose an implied 2d matrix
    // input:
    // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _nrows :: integer: number of rows in _A
    // _ncolumns :: integer: number of columns in _A
    // output:
    // _AT :: array: pseudo 2d matrix with implied dimensions: _ncolums x _nrows
    var _AT = array.new_float(_nrows * _ncolumns, 0)
    for i = 0 to _nrows - 1 by 1
        for j = 0 to _ncolumns - 1 by 1
            matrix_set(_AT, matrix_get(_A, i, j, _nrows), j, i, _ncolumns)
    _AT

multiply(_A, _B, _nrowsA, _ncolumnsA, _ncolumnsB) =>
    // Calculate scalar product of two matrices
    // input: 
    // _A :: array: pseudo 2d matrix
    // _B :: array: pseudo 2d matrix
    // _nrowsA :: integer: number of rows in _A
    // _ncolumnsA :: integer: number of columns in _A
    // _ncolumnsB :: integer: number of columns in _B
    // output:
    // _C:: array: pseudo 2d matrix with implied dimensions _nrowsA x _ncolumnsB
    var _C = array.new_float(_nrowsA * _ncolumnsB, 0)
    int _nrowsB = _ncolumnsA
    float elementC = 0.0
    for i = 0 to _nrowsA - 1 by 1
        for j = 0 to _ncolumnsB - 1 by 1
            elementC := 0
            for k = 0 to _ncolumnsA - 1 by 1
                elementC += matrix_get(_A, i, k, _nrowsA) * matrix_get(_B, k, j, _nrowsB)
                elementC
            matrix_set(_C, elementC, i, j, _nrowsA)
    _C

vnorm(_X, _n) =>
    //Square norm of vector _X with size _n
    float _norm = 0.0
    for i = 0 to _n - 1 by 1
        _norm += math.pow(array.get(_X, i), 2)
        _norm
    math.sqrt(_norm)

qr_diag(_A, _nrows, _ncolumns) =>
    //QR Decomposition with Modified Gram-Schmidt Algorithm (Column-Oriented)
    // input:
    // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _nrows :: integer: number of rows in _A
    // _ncolumns :: integer: number of columns in _A
    // output:
    // _Q: unitary matrix, implied dimenstions _nrows x _ncolumns
    // _R: upper triangular matrix, implied dimansions _ncolumns x _ncolumns
    var _Q = array.new_float(_nrows * _ncolumns, 0)
    var _R = array.new_float(_ncolumns * _ncolumns, 0)
    var _a = array.new_float(_nrows, 0)
    var _q = array.new_float(_nrows, 0)
    float _r = 0.0
    float _aux = 0.0
    //get first column of _A and its norm:
    for i = 0 to _nrows - 1 by 1
        array.set(_a, i, matrix_get(_A, i, 0, _nrows))
    _r := vnorm(_a, _nrows)
    //assign first diagonal element of R and first column of Q
    matrix_set(_R, _r, 0, 0, _ncolumns)
    for i = 0 to _nrows - 1 by 1
        matrix_set(_Q, array.get(_a, i) / _r, i, 0, _nrows)
    if _ncolumns != 1
        //repeat for the rest of the columns
        for k = 1 to _ncolumns - 1 by 1
            for i = 0 to _nrows - 1 by 1
                array.set(_a, i, matrix_get(_A, i, k, _nrows))
            for j = 0 to k - 1 by 1
                //get R_jk as scalar product of Q_j column and A_k column:
                _r := 0
                for i = 0 to _nrows - 1 by 1
                    _r += matrix_get(_Q, i, j, _nrows) * array.get(_a, i)
                    _r
                matrix_set(_R, _r, j, k, _ncolumns)
                //update vector _a
                for i = 0 to _nrows - 1 by 1
                    _aux := array.get(_a, i) - _r * matrix_get(_Q, i, j, _nrows)
                    array.set(_a, i, _aux)
            //get diagonal R_kk and Q_k column
            _r := vnorm(_a, _nrows)
            matrix_set(_R, _r, k, k, _ncolumns)
            for i = 0 to _nrows - 1 by 1
                matrix_set(_Q, array.get(_a, i) / _r, i, k, _nrows)
    [_Q, _R]

pinv(_A, _nrows, _ncolumns) =>
    //Pseudoinverse of matrix _A calculated using QR decomposition
    // Input: 
    // _A:: array: implied as a (_nrows x _ncolumns) matrix _A = [[column_0],[column_1],...,[column_(_ncolumns-1)]]
    // Output: 
    // _Ainv:: array implied as a (_ncolumns x _nrows) matrix _A = [[row_0],[row_1],...,[row_(_nrows-1)]]
    // ----
    // First find the QR factorization of A: A = QR,
    // where R is upper triangular matrix.
    // Then _Ainv = R^-1*Q^T.
    // ----
    [_Q, _R] = qr_diag(_A, _nrows, _ncolumns)
    _QT = transpose(_Q, _nrows, _ncolumns)
    // Calculate Rinv:
    var _Rinv = array.new_float(_ncolumns * _ncolumns, 0)
    float _r = 0.0
    matrix_set(_Rinv, 1 / matrix_get(_R, 0, 0, _ncolumns), 0, 0, _ncolumns)
    if _ncolumns != 1
        for j = 1 to _ncolumns - 1 by 1
            for i = 0 to j - 1 by 1
                _r := 0.0
                for k = i to j - 1 by 1
                    _r += matrix_get(_Rinv, i, k, _ncolumns) * matrix_get(_R, k, j, _ncolumns)
                    _r
                matrix_set(_Rinv, _r, i, j, _ncolumns)
            for k = 0 to j - 1 by 1
                matrix_set(_Rinv, -matrix_get(_Rinv, k, j, _ncolumns) / matrix_get(_R, j, j, _ncolumns), k, j, _ncolumns)
            matrix_set(_Rinv, 1 / matrix_get(_R, j, j, _ncolumns), j, j, _ncolumns)
    //
    _Ainv = multiply(_Rinv, _QT, _ncolumns, _ncolumns, _nrows)
    _Ainv

norm_rmse(_x, _xhat) =>
    // Root Mean Square Error normalized to the sample mean
    // _x.   :: array float, original data
    // _xhat :: array float, model estimate
    // output
    // _nrmse:: float
    float _nrmse = 0.0
    if array.size(_x) != array.size(_xhat)
        _nrmse := na
        _nrmse
    else
        int _N = array.size(_x)
        float _mse = 0.0
        for i = 0 to _N - 1 by 1
            _mse += math.pow(array.get(_x, i) - array.get(_xhat, i), 2) / _N
            _mse
        _xmean = array.sum(_x) / _N
        _nrmse := math.sqrt(_mse) / _xmean
        _nrmse
    _nrmse


diff(_src, _window, _degree) =>
    // Polynomial differentiator
    // input:
    // _src:: input series
    // _window:: integer: wigth of the moving lookback window
    // _degree:: integer: degree of fitting polynomial
    // output:
    // _diff :: series: time derivative
    // _nrmse:: float: normalized root mean square error
    //
    // Vandermonde matrix with implied dimensions (window x degree+1)
    // Linear form: J = [ [z]^0, [z]^1, ... [z]^degree], with z = [ (1-window)/2 to (window-1)/2 ] 
    var _J = array.new_float(_window * (_degree + 1), 0)
    for i = 0 to _window - 1 by 1
        for j = 0 to _degree by 1
            matrix_set(_J, math.pow(i, j), i, j, _window)
    // Vector of raw datapoints:
    var _Y_raw = array.new_float(_window, na)
    for j = 0 to _window - 1 by 1
        array.set(_Y_raw, j, _src[_window - 1 - j])
    // Calculate polynomial coefficients which minimize the loss function
    _C = pinv(_J, _window, _degree + 1)
    _a_coef = multiply(_C, _Y_raw, _degree + 1, _window, 1)
    // For first derivative, approximate the last point (i.e. z=window-1) by 
    float _diff = 0.0
    for i = 1 to _degree by 1
        _diff += i * array.get(_a_coef, i) * math.pow(_window - 1, i - 1)
        _diff
    // Calculates data estimate (needed for rmse)
    _Y_hat = multiply(_J, _a_coef, _window, _degree + 1, 1)
    float _nrmse = norm_rmse(_Y_raw, _Y_hat)
    [_diff, _nrmse]

/// --- main ---
degree = input.int(title='Polynomial Order', group='Model Parameters:', inline='linepar1', defval=2, minval=1)
rsi_l = input.int(title='RSI Length', group='Model Parameters:', inline='linepar1', defval=21, minval=1, tooltip='The period length of RSI that is used as input.')
window = input.int(title='Length ( > Order)', group='Model Parameters:', inline='linepar2', defval=21, minval=2)
signalLength = input.int(title='Signal Length', group='Model Parameters:', inline='linepar2', defval=9, tooltip='The signal line is a EMA of the D-RSI time series.')
islong = input.bool(title='Buy', group='Show Signals:', inline='lineent', defval=true)
isshort = input.bool(title='Sell', group='Show Signals:', inline='lineent', defval=true)
showendlabels = input.bool(title='Exit', group='Show Signals:', inline='lineent', defval=true)
buycond = input.string(title='Buy', group='Entry and Exit Conditions:', inline='linecond', defval='Zero-Crossing', options=['Zero-Crossing', 'Signal Line Crossing', 'Direction Change'])
sellcond = input.string(title='Sell', group='Entry and Exit Conditions:', inline='linecond', defval='Zero-Crossing', options=['Zero-Crossing', 'Signal Line Crossing', 'Direction Change'])
endcond = input.string(title='Exit', group='Entry and Exit Conditions:', inline='linecond', defval='Zero-Crossing', options=['Zero-Crossing', 'Signal Line Crossing', 'Direction Change'])
usenrmse = input.bool(title='', group='Filter by Means of Root-Mean-Square Error of RSI Fitting:', inline='linermse', defval=false)
rmse_thrs = input.float(title='RSI fitting Error Threshold, %', group='Filter by Means of Root-Mean-Square Error of RSI Fitting:', inline='linermse', defval=10, minval=0.0) / 100


src = ta.rsi(close, rsi_l)
[drsi, nrmse] = diff(src, window, degree)
signalline = ta.ema(drsi, signalLength)

// Conditions and filters
filter_rmse = usenrmse ? nrmse < rmse_thrs : true
dirchangeup = drsi > drsi[1] and drsi[1] < drsi[2] and drsi[1] < 0.0
dirchangedw = drsi < drsi[1] and drsi[1] > drsi[2] and drsi[1] > 0.0
crossup = ta.crossover(drsi, 0.0)
crossdw = ta.crossunder(drsi, 0.0)
crosssignalup = ta.crossover(drsi, signalline)
crosssignaldw = ta.crossunder(drsi, signalline)

//Signals
golong = (buycond == 'Direction Change' ? dirchangeup : buycond == 'Zero-Crossing' ? crossup : crosssignalup) and filter_rmse
goshort = (sellcond == 'Direction Change' ? dirchangedw : sellcond == 'Zero-Crossing' ? crossdw : crosssignaldw) and filter_rmse
endlong = (endcond == 'Direction Change' ? dirchangedw : endcond == 'Zero-Crossing' ? crossdw : crosssignaldw) and filter_rmse
endshort = (endcond == 'Direction Change' ? dirchangeup : endcond == 'Zero-Crossing' ? crossup : crosssignalup) and filter_rmse
plotshape(golong and islong ? low : na, location=location.belowbar, style=shape.labelup, color=color.new(#2E7C13, 0), size=size.small, title='Buy')
plotshape(goshort and isshort ? high : na, location=location.abovebar, style=shape.labeldown, color=color.new(#BF217C, 0), size=size.small, title='Sell')
plotshape(showendlabels and endlong and islong ? high : na, location=location.abovebar, style=shape.xcross, color=color.new(#2E7C13, 0), size=size.tiny, title='Exit Long')
plotshape(showendlabels and endshort and isshort ? low : na, location=location.belowbar, style=shape.xcross, color=color.new(#BF217C, 0), size=size.tiny, title='Exit Short')

alertcondition(golong, title='Long Signal', message='D-RSI: Long Signal')
alertcondition(goshort, title='Short Signal', message='D-RSI: Short Signal')
alertcondition(endlong, title='Exit Long Signal', message='D-RSI: Exit Long')
alertcondition(endshort, title='Exit Short Signal', message='D-RSI: Exit Short')

strategy.entry('long', strategy.long, when=golong and islong)
strategy.entry('short', strategy.short, when=goshort and isshort)
strategy.close('long', when=endlong and islong)
strategy.close('short', when=endshort and isshort)



Verwandt

Mehr