The resource loading... loading...

Center of Gravity SSL Channel Trend Following Strategy

Author: ChaoZhang, Date: 2023-09-19 21:30:23
Tags:

Overview

This strategy combines the Center of Gravity indicator and the SSL channel indicator to determine price trends and follow breakouts, belonging to the trend following strategy category. It also uses dynamic ATR stop loss to control risks.

Strategy Logic

  1. Calculate the Center of Gravity indicator, with upper and lower bands as the limits for upward and downward trends.

  2. Calculate the SSL channel indicator, within which is ranging, outside is the trend direction.

  3. When price breaks the upper band or channel, determine uptrend and go long. When price breaks the lower band or channel, determine downtrend and go short.

  4. Use dynamic ATR stop loss to trail stop loss levels and avoid enlarged losses.

  5. Combine with backtest period to generate actual trading signals.

The strategy utilizes two indicators to determine trends, one for detecting breakouts and one for confirming trends, combining them can improve accuracy. The dynamic stop loss adjusts based on market volatility, making it a very practical risk control method.

Advantage Analysis

  1. Utilizing two indicators improves accuracy in determining trends.

  2. Center of Gravity is sensitive to trend changes, SSL channel clearly defines trend direction.

  3. Dynamic ATR stop loss flexibly adjusts based on market volatility.

  4. Simple and clear strategy rules, easy to understand and implement.

  5. Large optimization space for parameters, can be adjusted for different markets.

  6. Complete backtest functionality to verify strategy performance.

Risk Analysis

  1. Both Center of Gravity and SSL may fail in some cases, leading to wrong signals. Can add other indicators for confirmation.

  2. Dynamic stop loss may be too aggressive, can loosen the stop loss range.

  3. Improper backtest period selection may lead to poor strategy results, need to backtest on different market stages.

  4. Need to fully consider the impact of trading costs.

Optimization Directions

  1. Test different parameter combinations to find optimal pairs.

  2. Optimize dynamic stop loss ATR period and multiplier parameters.

  3. Introduce other indicators for signal filtering, e.g. MACD, KDJ.

  4. Add machine learning models to aid in trend direction prediction.

  5. Optimize money management, set position sizing rules.

  6. Fine tune parameters for specific products.

Summary

This strategy combines Center of Gravity and SSL Channel to determine trends, and uses dynamic ATR stop loss to control risks. It is an actionable trend following strategy. Further improvements can be made via parameter optimization, introducing other indicators and machine learning etc. Overall this is a highly practical and expandable strategy, serving as a valuable reference for algorithmic trading.


/*backtest
start: 2023-08-19 00:00:00
end: 2023-09-13 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
// Thanks to HPotter for the original code for Center of Gravity Backtest
strategy("CoG SSL BF 🚀", overlay=true, initial_capital=10000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.075)

/////////////// Time Frame ///////////////
_0 = input(false,  "════════ Test Period ═══════")
testStartYear = input(2017, "Backtest Start Year") 
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay, 0, 0)

testStopYear = input(2019, "Backtest Stop Year")
testStopMonth = input(12, "Backtest Stop Month")
testStopDay = input(31, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay, 0, 0)

testPeriod() => true

/////////////// SSL Channels /////////////// 
_1 = input(false,  "═════════ SSL ══════════")
len1=input(title="SMA Length 1", defval=12)
len2=input(title="SMA Length 2", defval=13)

smaHigh = sma(high, len1)
smaLow = sma(low, len2)

Hlv = 0
Hlv := close > smaHigh ? 1 : close < smaLow ? -1 : Hlv[1]
sslDown = Hlv < 0 ? smaHigh : smaLow
sslUp = Hlv < 0 ? smaLow : smaHigh

///////////// Center of Gravity /////////////
_2 = input(false,  "═════════ CoG ══════════")
Length = input(25, minval=1)
m = input(5, minval=0)
Percent = input(6, minval=0, title="COG %")

xLG = linreg(close, Length, m)
xLG1r = xLG + ((close * Percent) / 100)
xLG1s = xLG - ((close * Percent) / 100)

pos = 0.0
pos := iff(close > xLG1r, 1, iff(close < xLG1s, -1, nz(pos[1], 0))) 
possig = iff(pos == 1, 1, iff(pos == -1, -1, pos))

///////////// Rate Of Change ///////////// 
_3 = input(false,  "══════ Rate of Change ══════")
source = close
roclength = input(2, "ROC Length",  minval=1)
pcntChange = input(10, "ROC % Change", minval=1)
roc = 100 * (source - source[roclength]) / source[roclength]
emaroc = ema(roc, roclength / 2)
isMoving() => emaroc > (pcntChange / 2) or emaroc < (0 - (pcntChange / 2))

/////////////// Srategy ///////////////
long = possig == 1 or (sslUp > sslDown and isMoving())
short = possig == -1 or (sslUp < sslDown and isMoving())

last_long = 0.0
last_short = 0.0
last_long := long ? time : nz(last_long[1])
last_short := short ? time : nz(last_short[1])

long_signal = crossover(last_long, last_short)
short_signal = crossover(last_short, last_long)

last_open_long_signal = 0.0
last_open_short_signal = 0.0
last_open_long_signal := long_signal ? open : nz(last_open_long_signal[1])
last_open_short_signal := short_signal ? open : nz(last_open_short_signal[1])

last_long_signal = 0.0
last_short_signal = 0.0
last_long_signal := long_signal ? time : nz(last_long_signal[1])
last_short_signal := short_signal ? time : nz(last_short_signal[1])

in_long_signal = last_long_signal > last_short_signal
in_short_signal = last_short_signal > last_long_signal

last_high = 0.0
last_low = 0.0
last_high := not in_long_signal ? na : in_long_signal and (na(last_high[1]) or high > nz(last_high[1])) ? high : nz(last_high[1])
last_low := not in_short_signal ? na : in_short_signal and (na(last_low[1]) or low < nz(last_low[1])) ? low : nz(last_low[1])

since_longEntry = barssince(last_open_long_signal != last_open_long_signal[1]) 
since_shortEntry = barssince(last_open_short_signal != last_open_short_signal[1]) 

/////////////// Dynamic ATR Stop Losses ///////////////
_4 = input(false,  "════════ Stop Loss ═══════")
atrLkb = input(1, minval=1, title='ATR Stop Period')
atrMult = input(2, step=0.25, title='ATR Stop Multiplier') 
atr1 = atr(atrLkb)

longStop = 0.0
longStop :=  short_signal ? na : long_signal ? close - (atr1 * atrMult) : longStop[1]
shortStop = 0.0
shortStop := long_signal ? na : short_signal ? close + (atr1 * atrMult) : shortStop[1]

/////////////// Execution ///////////////
if testPeriod()
    strategy.entry("L",  strategy.long, when=long)
    strategy.entry("S", strategy.short, when=short)
    strategy.exit("L SL", "L", stop=longStop, when=since_longEntry > 0)
    strategy.exit("S SL", "S", stop=shortStop, when=since_shortEntry > 0)

/////////////// Plotting ///////////////
p1 = plot(sslDown, linewidth = 1, color=color.red, title="SSL down")
p2 = plot(sslUp, linewidth = 1, color=color.lime, title="SSL up")
fill(p1, p2,  color = not isMoving() ? color.white : sslDown < sslUp ? color.lime : color.red, transp=80)
plot(xLG1r, color=color.lime, title="LG1r")
plot(xLG1s, color=color.red, title="LG1s")
plot(strategy.position_size <= 0 ? na : longStop, title="Long Stop Loss", color=color.yellow, style=plot.style_circles, linewidth=1)
plot(strategy.position_size >= 0 ? na : shortStop, title="Short Stop Loss", color=color.orange, style=plot.style_circles, linewidth=1)
bgcolor(long ? color.green : short ? color.red : not isMoving() ? color.white : na, transp=80)
bgcolor(long_signal ? color.lime : short_signal ? color.red : na, transp=60)

More