This is a strategy that utilizes moving averages and Bollinger Bands for trend judgment, combined with breakout filtering and stop loss principles. It can capture signals in a timely manner when trend changes, reduce false signals through dual moving average filtering, and control risks by setting stop loss.
The strategy consists of the following main parts:
Trend judgment: Use MACD to judge the price trend and distinguish bullish and bearish trends.
Range filtering: Use Bollinger Bands to judge the price fluctuation range and filter out signals that do not break through the range.
Dual moving average confirmation: The fast EMA and slow EMA form the dual moving average to confirm trend signals. Buy signals are generated only when fast EMA > slow EMA.
Stop loss mechanism: Set stop loss points. Close positions when prices break through stop loss points in unfavorable directions.
The logic for entry signals is:
When all three conditions are met at the same time, a buy signal is generated.
There are two types of closing positions, take profit and stop loss. The take profit point is the entry price multiplied by a certain percentage, and the stop loss point is the entry price multiplied by a certain percentage. When the price breaks through either point, close positions.
The advantages of this strategy are:
There are also some risks in this strategy:
To address these risks, the strategy can be optimized by adjusting parameters, setting stop loss positions, etc.
The strategy can be optimized in the following aspects:
By testing different parameter settings and evaluating returns and Sharpe ratios, the optimal state of the strategy can be found.
This is a quantitative strategy that utilizes trend judgment, range filtering, dual moving average confirmation and stop loss ideas. It can effectively determine the trend direction and strike a balance between profit maximization and risk control. Through parameter optimization, machine learning and other means, the strategy has great room for improvement to achieve better results.
/*backtest start: 2022-11-20 00:00:00 end: 2023-11-26 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title="Range Filter Buy and Sell Strategies", shorttitle="Range Filter Strategies", overlay=true,pyramiding = 5) // Original Script > @DonovanWall // Adapted Version > @guikroth // // Updated PineScript to version 5 // Republished by > @tvenn // Strategizing by > @RonLeigh ////////////////////////////////////////////////////////////////////////// // Settings for 5min chart, BTCUSDC. For Other coin, change the parameters ////////////////////////////////////////////////////////////////////////// SS = input.bool(false,"Percentage Take Profit Stop Loss") longProfitPerc = input.float(title='LongProfit(%)', minval=0.0, step=0.1, defval=1.5) * 0.01 shortProfitPerc = input.float(title='ShortProfit(%)', minval=0.0, step=0.1, defval=1.5) * 0.01 longLossPerc = input.float(title='LongStop(%)', minval=0.0, step=0.1, defval=1.5) * 0.01 shortLossPerc = input.float(title='ShortStop(%)', minval=0.0, step=0.1, defval=1.5) * 0.01 // Color variables upColor = color.white midColor = #90bff9 downColor = color.blue // Source src = input(defval=close, title="Source") // Sampling Period // Settings for 5min chart, BTCUSDC. For Other coin, change the paremeters per = input.int(defval=100, minval=1, title="Sampling Period") // Range Multiplier mult = input.float(defval=3.0, minval=0.1, title="Range Multiplier") // Smooth Average Range smoothrng(x, t, m) => wper = t * 2 - 1 avrng = ta.ema(math.abs(x - x[1]), t) smoothrng = ta.ema(avrng, wper) * m smoothrng smrng = smoothrng(src, per, mult) // Range Filter rngfilt(x, r) => rngfilt = x rngfilt := x > nz(rngfilt[1]) ? x - r < nz(rngfilt[1]) ? nz(rngfilt[1]) : x - r : x + r > nz(rngfilt[1]) ? nz(rngfilt[1]) : x + r rngfilt filt = rngfilt(src, smrng) // Filter Direction upward = 0.0 upward := filt > filt[1] ? nz(upward[1]) + 1 : filt < filt[1] ? 0 : nz(upward[1]) downward = 0.0 downward := filt < filt[1] ? nz(downward[1]) + 1 : filt > filt[1] ? 0 : nz(downward[1]) // Target Bands hband = filt + smrng lband = filt - smrng // Colors filtcolor = upward > 0 ? upColor : downward > 0 ? downColor : midColor barcolor = src > filt and src > src[1] and upward > 0 ? upColor : src > filt and src < src[1] and upward > 0 ? upColor : src < filt and src < src[1] and downward > 0 ? downColor : src < filt and src > src[1] and downward > 0 ? downColor : midColor filtplot = plot(filt, color=filtcolor, linewidth=2, title="Range Filter") // Target hbandplot = plot(hband, color=color.new(upColor, 70), title="High Target") lbandplot = plot(lband, color=color.new(downColor, 70), title="Low Target") // Fills fill(hbandplot, filtplot, color=color.new(upColor, 90), title="High Target Range") fill(lbandplot, filtplot, color=color.new(downColor, 90), title="Low Target Range") // Bar Color barcolor(barcolor) // Break Outs longCond = bool(na) shortCond = bool(na) longCond := src > filt and src > src[1] and upward > 0 or src > filt and src < src[1] and upward > 0 shortCond := src < filt and src < src[1] and downward > 0 or src < filt and src > src[1] and downward > 0 CondIni = 0 CondIni := longCond ? 1 : shortCond ? -1 : CondIni[1] longCondition = longCond and CondIni[1] == -1 shortCondition = shortCond and CondIni[1] == 1 // alertcondition(longCondition, title="Buy alert on Range Filter", message="Buy alert on Range Filter") // alertcondition(shortCondition, title="Sell alert on Range Filter", message="Sell alert on Range Filter") // alertcondition(longCondition or shortCondition, title="Buy and Sell alert on Range Filter", message="Buy and Sell alert on Range Filter") ////////////// 副 sensitivity = input(150, title='Sensitivity') fastLength = input(20, title='FastEMA Length') slowLength = input(40, title='SlowEMA Length') channelLength = input(20, title='BB Channel Length') multt = input(2.0, title='BB Stdev Multiplier') DEAD_ZONE = nz(ta.rma(ta.tr(true), 100)) * 3.7 calc_macd(source, fastLength, slowLength) => fastMA = ta.ema(source, fastLength) slowMA = ta.ema(source, slowLength) fastMA - slowMA calc_BBUpper(source, length, multt) => basis = ta.sma(source, length) dev = multt * ta.stdev(source, length) basis + dev calc_BBLower(source, length, multt) => basis = ta.sma(source, length) dev = multt * ta.stdev(source, length) basis - dev t1 = (calc_macd(close, fastLength, slowLength) - calc_macd(close[1], fastLength, slowLength)) * sensitivity e1 = calc_BBUpper(close, channelLength, multt) - calc_BBLower(close, channelLength, multt) trendUp = t1 >= 0 ? t1 : 0 trendDown = t1 < 0 ? -1 * t1 : 0 duoad = trendUp > 0 and trendUp > e1 kongad = trendDown > 0 and trendDown > e1 duo = longCondition and duoad kong = shortCondition and kongad //Alerts plotshape(longCondition and trendUp > e1 and trendUp > 0 , title="Buy Signal", text="Buy", textcolor=color.white, style=shape.labelup, size=size.small, location=location.belowbar, color=color.new(#aaaaaa, 20)) plotshape(shortCondition and trendDown > e1 and trendDown > 0 , title="Sell Signal", text="Sell", textcolor=color.white, style=shape.labeldown, size=size.small, location=location.abovebar, color=color.new(downColor, 20)) if longCondition and trendUp > e1 and trendUp > 0 strategy.entry('Long',strategy.long, comment = "buy" ) if shortCondition and trendDown > e1 and trendDown > 0 strategy.entry('Short',strategy.short, comment = "sell" ) longlimtPrice = strategy.position_avg_price * (1 + longProfitPerc) shortlimtPrice = strategy.position_avg_price * (1 - shortProfitPerc) longStopPrice = strategy.position_avg_price * (1 - longLossPerc) shortStopPrice = strategy.position_avg_price * (1 + shortLossPerc) if (strategy.position_size > 0) and SS == true strategy.exit(id="Long",comment_profit = "Profit",comment_loss = "StopLoss", stop=longStopPrice,limit = longlimtPrice) if (strategy.position_size < 0) and SS == true strategy.exit(id="Short",comment_profit = "Profit",comment_loss = "StopLoss", stop=shortStopPrice,limit = shortlimtPrice)