Esta estrategia adopta un enfoque de avance de nivel para ir largo o corto bajo ciertas condiciones de avance, y tiene capacidades de prueba automática para encontrar la combinación óptima de parámetros.
Los parámetros de entrada incluyen los días de retroceso, el porcentaje de ganancia, el porcentaje de stop loss y los parámetros de retroceso automático como el rango de retroceso, el rango de ganancia / stop loss, etc.
Durante el backtesting, recorre varias combinaciones de retroceso, toma ganancias y stop loss, y registra PnL para cada combinación.
Lógica de la señal de avance: larga cuando el cierre se rompe por encima de la banda superior y no la barra de entrada, corta cuando el cierre se rompe por debajo de la banda inferior y no la barra de entrada.
Condición de stop loss: si no se obtiene ganancia y se activa el stop loss, salga de la operación.
Tome la condición de ganancia: si no se detiene y se activa la toma de ganancia, salga del comercio.
Mostrar una tabla detallada de los resultados de las pruebas de retroceso, clasificable por tasa de ganancia, ganancia neta o número de operaciones según la configuración del usuario.
Auto backtest puede encontrar rápidamente conjuntos óptimos de parámetros sin pruebas manuales.
Ordenar los resultados de las pruebas de retroceso de forma flexible por tasa de ganancia, ganancia neta, número de operaciones, etc. según las necesidades.
Visualice el PnL para cada operación.
Parámetros de prueba posterior personalizables para probar un espacio de parámetros más amplio para encontrar el óptimo global.
Reglas comerciales simples y claras, fáciles de entender y aplicar.
Solución: utilizar un período de prueba posterior más largo.
Solución: relajar adecuadamente los niveles de toma de ganancias/stop loss.
Solución: ensayo en diferentes productos para encontrar conjuntos de parámetros sólidos.
Solución: prueba de la estabilidad de los parámetros en los productos y los plazos.
Ignorar los costos de transacción conduce a un sesgo en los resultados.
Aumentar las dimensiones de optimización como la adición de paradas o límites comerciales.
Optimice las condiciones de entrada con filtros de tendencia.
Mejorar la toma de ganancias/detener pérdidas como la toma dinámica de ganancias o el detener pérdidas.
Introduzca el aprendizaje automático para la optimización de parámetros.
Optimizar la estructura del código para una prueba posterior más rápida.
Prueba de la robustez de los parámetros en todos los productos y plazos.
Considere la integración de las capacidades de comercio automático.
La estrategia tiene una lógica clara y sencilla, la prueba automática de retroceso permite una rápida puesta a punto de parámetros, la pantalla PnL facilita mejoras adicionales. Existen riesgos, pero pueden reducirse a través de optimizaciones multidimensionales, con un fuerte valor práctico. En resumen, esta estrategia equipada con herramientas de prueba automática de retroceso puede ayudar a los operadores a desarrollar rápidamente sistemas comerciales estables basados en conceptos simples de ruptura.
/*backtest start: 2023-09-16 00:00:00 end: 2023-10-16 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // © -_- //@version=5 // strategy("[-_-] LBAB", process_orders_on_close=true, overlay=true, max_labels_count=500, max_lines_count=500, max_boxes_count=500, default_qty_type=strategy.cash, default_qty_value=100, initial_capital=10000, commission_type=strategy.commission.percent, commission_value=0.075) // Inputs lookback = input.int(2, title="Lookback", minval=2, maxval=15) tp = input.float(5, title="TP (%)", minval=1, maxval=10000) sl = input.float(5, title="SL (% from Low)", minval=1, maxval=100) com = input.float(0.075, title="Commission (%)", minval=0, maxval=50) min_lookback_tr = input.float(2, title="Min Lookback", minval=1, maxval=500, inline="tr_lookback", group="Optimisation") max_lookback_tr = input.float(5, title="Max Lookback", minval=1, maxval=500, inline="tr_lookback", group="Optimisation") min_tp_tr = input.float(5, title="Min TP (%)", minval=1, maxval=10000, inline="tr_tp", group="Optimisation") max_tp_tr = input.float(10, title="Max TP (%)", minval=1, maxval=10000, inline="tr_tp", group="Optimisation") min_sl_tr = input.float(1, title="Min SL (%)", minval=1, maxval=100, inline="tr_sl", group="Optimisation") max_sl_tr = input.float(5, title="Max SL (%)", minval=1, maxval=100, inline="tr_sl", group="Optimisation") imp_perc_profit = input.bool(true, title="Percentage profitable", group="Optimisation") imp_netprofit = input.bool(false, title="Net profit", group="Optimisation") imp_numtrades = input.bool(false, title="Number of trades", group="Optimisation") table_pos = input.string("Bottom Right", title="Position", options=["Top Left", "Top Center", "Top Right", "Middle Left", "Middle Center", "Middle Right", "Bottom Left", "Bottom Center", "Bottom Right"], group="Table") table_font_size = input.string("Normal", title="Font size", options=["Auto", "Tiny", "Small", "Normal", "Large"], group="Table") // Table parameters table_pos_ = switch table_pos "Top Left" => position.top_left "Top Center" => position.top_center "Top Right" => position.top_right "Middle Left" => position.middle_left "Middle Center" => position.middle_center "Middle Right" => position.middle_right "Bottom Left" => position.bottom_left "Bottom Center" => position.bottom_center "Bottom Right" => position.bottom_right table_font_size_ = switch table_font_size "Auto" => size.auto "Tiny" => size.tiny "Small" => size.small "Normal" => size.normal "Large" => size.large // Sorting function (first element will be largest) sortArr(arr, arr_index) => n = array.size(arr) - 1 for i = 0 to n - 1 for j = 0 to n - i - 1 if array.get(arr, j) < array.get(arr, j + 1) temp = array.get(arr, j) temp_index = array.get(arr_index, j) array.set(arr, j, array.get(arr, j + 1)) array.set(arr, j + 1, temp) array.set(arr_index, j, array.get(arr_index, j + 1)) array.set(arr_index, j + 1, temp_index) // Safe checks if min_lookback_tr > max_lookback_tr runtime.error("Min Lookback must be less than Max Lookback") if min_tp_tr > max_tp_tr runtime.error("Min Take Profit must be less than Max Take Profit") if min_sl_tr > max_sl_tr runtime.error("Min Stop Loss must be less than Max Stop Loss") // tp_min_ = int(min_tp_tr / 1) tp_max_ = int(max_tp_tr / 1) sl_min_ = int(min_sl_tr / 1) sl_max_ = int(max_sl_tr / 1) // Size for arrays arr_size = int((max_lookback_tr - min_lookback_tr + 1) * (tp_max_ - tp_min_ + 1) * (sl_max_ - sl_min_ + 1)) // Arrays var arr_bi = array.new_int(arr_size, na) // bar_index of Smash Day var arr_in_pos = array.new_bool(arr_size, false) // are we in a position? var arr_params = array.new_string(arr_size, "") var arr_wonlost = array.new_string(arr_size, "") var arr_profit = array.new_float(arr_size, 0) // Testing what parameters are best index = 0 // Lookback for lookback_i = min_lookback_tr to max_lookback_tr // Take profit for tp_i = tp_min_ to tp_max_ // Stop loss for sl_i = sl_min_ to sl_max_ // Parameters of current iteration lookback_ = lookback_i tp_ = tp_i sl_ = sl_i // if array.get(arr_params, index) == "" array.set(arr_params, index, str.tostring(lookback_) + " " + str.tostring(tp_) + " " + str.tostring(sl_)) // Was there an entry? was_edone = false // If entry price reached if not array.get(arr_in_pos, index) and not na(array.get(arr_bi, index)) if high >= high[bar_index - array.get(arr_bi, index)] and bar_index != array.get(arr_bi, index) array.set(arr_in_pos, index, true) was_edone := true // If we're in a position if array.get(arr_in_pos, index) and bar_index != array.get(arr_bi, index) and not was_edone low_sl = low[bar_index - array.get(arr_bi, index)] * (1 - sl_ / 100) high_ep = high[bar_index - array.get(arr_bi, index)] high_tp = high_ep * (1 + tp_ / 100) amount = 100 // Stop loss if low <= low_sl array.set(arr_in_pos, index, false) array.set(arr_wonlost, index, array.get(arr_wonlost, index) + "0") array.set(arr_profit, index, array.get(arr_profit, index) - math.abs(amount / high_ep * low_sl - amount) - com / 100 * amount * 2) array.set(arr_bi, index, na) // Take profit if high >= high_tp array.set(arr_in_pos, index, false) array.set(arr_wonlost, index, array.get(arr_wonlost, index) + "1") array.set(arr_profit, index, array.get(arr_profit, index) + math.abs(amount / high_ep * high_tp - amount) - com / 100 * amount * 2) array.set(arr_bi, index, na) // Entry condition cond = barstate.isconfirmed and close < low[1] and high[1] < high[lookback_ + 1] //and not array.get(arr_in_pos, index) // New entry price if cond and not array.get(arr_in_pos, index) array.set(arr_bi, index, bar_index) // Update index index := index + 1 // Checking the results var table t = na var result_index = array.new_int(0, na) var result_arr_winrate = array.new_float(0, na) var result_arr_tradenum = array.new_int(0, na) var sort_array = array.new_float(0, na) if (barstate.islast or barstate.islastconfirmedhistory) and na(t) for i = 0 to array.size(arr_params) - 1 wins = 0 losses = 0 arr = array.get(arr_wonlost, i) for j = 0 to str.length(arr) - 1 str_ = str.substring(arr, j, j + 1) if str_ == "0" losses := losses + 1 if str_ == "1" wins := wins + 1 // Push percentage profitable trades perc_profit = math.round(wins / (wins + losses) * 100, 2) array.push(result_arr_winrate, perc_profit) // Push number of trades trade_num = str.length(array.get(arr_wonlost, i)) array.push(result_arr_tradenum, trade_num) // Push index array.push(result_index, i) // For combined sorting array.push(sort_array, (imp_netprofit ? array.get(arr_profit, i) : 1) * (imp_perc_profit ? perc_profit : 1) * (imp_numtrades ? trade_num : 1)) // Sort sortArr(array.copy(sort_array), result_index) t := table.new(columns=6, rows=13, bgcolor=color.white, border_color=color.new(color.blue, 0), border_width=1, frame_color=color.new(color.blue, 0), frame_width=1, position=table_pos_) table.cell(t, 0, 0, "% Profitable" + (imp_perc_profit ? " ↓" : ""), bgcolor=imp_perc_profit ? color.rgb(23, 18, 25) : color.white, text_color=imp_perc_profit ? color.white : color.black, text_size=table_font_size_) table.cell(t, 1, 0, "Net Profit" + (imp_netprofit ? " ↓" : ""), bgcolor=imp_netprofit ? color.rgb(23, 18, 25) : color.white, text_color=imp_netprofit ? color.white : color.black, text_size=table_font_size_) table.cell(t, 2, 0, "# of trades" + (imp_numtrades ? " ↓" : ""), bgcolor=imp_numtrades ? color.rgb(23, 18, 25) : color.white, text_color=imp_numtrades ? color.white : color.black, text_size=table_font_size_) table.cell(t, 3, 0, "Lookback", text_size=table_font_size_) table.cell(t, 4, 0, "Take Profit %", text_size=table_font_size_) table.cell(t, 5, 0, "Stop Loss %", text_size=table_font_size_) counter = 0 forloop_counter = math.min(array.size(result_index) - 1, 10) for i = 0 to forloop_counter i_ = array.get(result_index, i) params_ = str.split(array.get(arr_params, i_), " ") col_ = color.new(color.blue, 75) table.cell(t, 0, i + 1, str.tostring(array.get(result_arr_winrate, i_)) + "%", bgcolor=col_, text_size=table_font_size_) table.cell(t, 1, i + 1, str.tostring(math.round(array.get(arr_profit, i_), 2)) + "$", bgcolor=col_, text_size=table_font_size_) table.cell(t, 2, i + 1, str.tostring(array.get(result_arr_tradenum, i_)), bgcolor=col_, text_size=table_font_size_) table.cell(t, 3, i + 1, array.get(params_, 0), bgcolor=col_, text_size=table_font_size_) table.cell(t, 4, i + 1, array.get(params_, 1), bgcolor=col_, text_size=table_font_size_) table.cell(t, 5, i + 1, array.get(params_, 2), bgcolor=col_, text_size=table_font_size_) counter := counter + 1 // Warn if timeframe is <= 10 minutes if timeframe.in_seconds(timeframe.period) <= 600 table.cell(t, 0, forloop_counter + 2, "Timeframe might be too low", bgcolor=color.orange, text_size=table_font_size_, tooltip="Selected timeframe might be too low and cause an error") table.merge_cells(t, 0, forloop_counter + 2, 5, forloop_counter + 2) // Strategy var int bi = na var int pos_bi = na // Buy condition cond = barstate.isconfirmed and close < low[1] and high[1] < high[lookback + 1] and strategy.position_size == 0 // Stop loss, Take profit if strategy.position_size[1] == 0 and strategy.position_size > 0 and bar_index != bi strategy.exit("TP/SL", "Long", stop=low[bar_index - bi] * (1 - sl / 100), limit=high[bar_index - bi] * (1 + tp / 100)) pos_bi := bar_index // Buy if cond strategy.order("Long", strategy.long, stop=high) bi := bar_index // Box if strategy.position_size[1] != 0 and strategy.position_size == 0 tn = strategy.closedtrades - 1 penp = strategy.closedtrades.entry_price(tn) pexp = strategy.closedtrades.exit_price(tn)