Estrategia de trading bidireccional de cruce de medias móviles


Fecha de creación: 2023-12-12 11:26:54 Última modificación: 2023-12-12 11:26:54
Copiar: 1 Número de Visitas: 347
1
Seguir
1141
Seguidores

Estrategia de trading bidireccional de cruce de medias móviles

Descripción general

La estrategia se caracteriza por la calculación de promedios móviles de diferentes períodos y la emisión de señales de negociación cuando los promedios móviles de períodos más largos se cruzan en promedios móviles de períodos más cortos. La estrategia es compatible con las operaciones de más y menos, lo que permite realizar operaciones bidireccionales.

Principio de estrategia

La estrategia utiliza tres promedios móviles de 8 períodos, 13 períodos y 21 períodos, de los cuales 8 períodos son más cortos y 21 períodos son más largos. Se produce una señal de más cuando la línea de 8 períodos atraviesa la línea de 21 períodos. Se produce una señal de vacío cuando la línea de 8 períodos atraviesa la línea de 21 períodos.

En la ejecución de operaciones concretas, la estrategia también agrega una condición de juicio para evitar que las operaciones se encuentren en una situación de curvatura. Es decir, solo se ordenará cuando el precio de cierre de la línea K esté por encima de la intersección de la señal de hacer más o por debajo de la señal de hacer menos. Esto puede filtrar eficazmente algunas señales falsas.

Ventajas estratégicas

  1. Aplicación del principio de la media móvil cruzada para seguir las tendencias del mercado de manera efectiva
  2. Se ha configurado un filtro de transacciones para eliminar algunas señales falsas y evitar la trampa.
  3. Apoya el comercio bidireccional para obtener ganancias en las fases bajas del mercado
  4. El cruce de medias móviles transitorias permite capturar el giro entre niveles más grandes
  5. La lógica de la estrategia es simple y clara, fácil de entender y modificar y optimizar

Riesgo estratégico

  1. En caso de una gran conmoción, puede producirse una falla y una gran cantidad de señales falsas.
  2. Si no puedes juzgar las cosas en el momento normal, te perderás algunas oportunidades.
  3. El retraso en el análisis de cruces entre períodos puede no capturar el cambio de tendencia a corto plazo.
  4. Sin tener en cuenta el impacto de la volatilidad de los precios de las acciones, los parámetros deben ajustarse según la volatilidad
  5. No hay paradas de pérdidas, hay un riesgo de pérdidas ilimitadas.

Soluciones para el riesgo

  1. Evita el impacto de la conmoción en combinación con otros indicadores
  2. Reducir el ciclo de las medias móviles y aumentar la sensibilidad al juicio
  3. Incorporación de un mecanismo de suspensión de pérdidas, control estricto de los riesgos de transacción y retiro de ganancias

Dirección de optimización

  1. En combinación con otros indicadores técnicos, como MACD, KDJ, etc., para juzgar y mejorar la eficacia
  2. Prueba el efecto de la configuración de diferentes parámetros en el efecto general de la estrategia
  3. Parámetros de adaptación según el tipo de mercado y la volatilidad
  4. Optimizar el cálculo de las medias móviles con indicadores como DEMA, ZLEMA
  5. Agregar una lógica de parada de pérdidas
  6. Optimización de los indicadores de retroalimentación cuantitativa para determinar los parámetros óptimos

Resumir

La estrategia tiene una idea general clara y capta las oportunidades de movimiento rotativo a través de la determinación de la relación de tendencias de largo y corto plazo a través de una simple y efectiva media móvil. La estrategia puede operar en ambos sentidos y, al mismo tiempo, es fácil de entender y optimizar. Pero también hay algunos riesgos que requieren una mejora adicional, como la incapacidad de manejar de manera efectiva situaciones específicas y la falta de control de riesgo de operaciones de stop loss.

Código Fuente de la Estrategia
/*backtest
start: 2022-12-05 00:00:00
end: 2023-12-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=3
//Converted to strategy by shawnteoh

strategy(title = "MA Emperor insiliconot Strategy" , overlay=true, pyramiding=1, precision=8)
strat_dir_input = input(title="Strategy Direction", defval="long", options=["long", "short", "all"])
strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all
strategy.risk.allow_entry_in(strat_dir_value)

// Testing start dates
testStartYear = input(2020, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
//Stop date if you want to use a specific range of dates
testStopYear = input(2030, "Backtest Stop Year")
testStopMonth = input(12, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
// Order size
orderQty = input(1, "Order quantity", type = float)
// Plot indicator
plotInd = input(false, "Plot indicators?", type = bool)

testPeriod() =>
    time >= testPeriodStart and time <= testPeriodStop ? true : false

haClose = close
haOpen  = open
haHigh  = high
haLow   = low 

haClose := (open + high + low + close) / 4
haOpen  := (nz(haOpen[1]) + nz(haClose[1])) / 2
haHigh  := max(high, max(haOpen, haClose))
haLow   := min(low , min(haOpen, haClose))

ssrc = close
ha = false

o = ha ? haOpen : open
c = ha ? haClose : close
h = ha ? haHigh : high
l = ha ? haLow : low

ssrc := ssrc == close ? ha ? haClose : c : ssrc
ssrc := ssrc == open ? ha ? haOpen : o : ssrc
ssrc := ssrc == high ? ha ? haHigh : h : ssrc
ssrc := ssrc == low ? ha ? haLow : l : ssrc
ssrc := ssrc == hl2 ? ha ? (haHigh + haLow) / 2 : hl2 : ssrc
ssrc := ssrc == hlc3 ? ha ? (haHigh + haLow + haClose) / 3 : hlc3 : ssrc
ssrc := ssrc == ohlc4 ? ha ? (haHigh + haLow + haClose+ haOpen) / 4 : ohlc4 : ssrc

type = input(defval = "EMA", title = "Type", options = ["Butterworth_2Pole", "DEMA", "EMA", "Gaussian", "Geometric_Mean", "LowPass", "McGuinley", "SMA", "Sine_WMA", "Smoothed_MA", "Super_Smoother",  "Triangular_MA", "Wilders", "Zero_Lag"])

len1=input(8, title ="MA 1")
len2=input(13, title = "MA 2") 
len3=input(21, title = "MA 3")
len4=input(55, title = "MA 4")
len5=input(89, title = "MA 5")
lenrib=input(120, title = "IB")
lenrib2=input(121, title = "2B")
lenrib3=input(200, title = "21b")
lenrib4=input(221, title = "22b")

onOff1  = input(defval=true, title="Enable 1")
onOff2  = input(defval=true, title="Enable 2")
onOff3  = input(defval=true, title="Enable 3")
onOff4  = input(defval=false, title="Enable 4")
onOff5  = input(defval=false, title="Enable 5")
onOff6  = input(defval=false, title="Enable 6")
onOff7  = input(defval=false, title="Enable 7")
onOff8  = input(defval=false, title="Enable x")
onOff9  = input(defval=false, title="Enable x")


gauss_poles = input(3, "*** Gaussian poles ***",  minval = 1, maxval = 14) 
linew = 2
shapes = false

 
variant_supersmoother(src,len) =>
    Pi = 2 * asin(1)
    a1 = exp(-1.414* Pi / len)
    b1 = 2*a1*cos(1.414* Pi / len)
    c2 = b1
    c3 = (-a1)*a1
    c1 = 1 - c2 - c3
    v9 = 0.0
    v9 := c1*(src + nz(src[1])) / 2 + c2*nz(v9[1]) + c3*nz(v9[2])
    v9
    
variant_smoothed(src,len) =>
    v5 = 0.0
    v5 := na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len
    v5

variant_zerolagema(src, len) =>
    price = src
    l = (len - 1) / 2
    d = (price + (price - price[l]))
    z = ema(d, len)
    z
    
variant_doubleema(src,len) =>
    v2 = ema(src, len)
    v6 = 2 * v2 - ema(v2, len)
    v6

variant_WiMA(src, length) =>
    MA_s= nz(src)
    MA_s:=(src + nz(MA_s[1] * (length-1)))/length
    MA_s
    
fact(num)=>
    a = 1
    nn = num <= 1 ? 1 : num
    for i = 1 to nn
        a := a * i
    a
    
getPoles(f, Poles, alfa)=>
    filt = f
    sign = 1
    results = 0 + n//tv series spoofing
    for r = 1 to max(min(Poles, n),1)
	    mult  = fact(Poles) / (fact(Poles - r) * fact(r))
	    matPo = pow(1 - alfa, r)
        prev  = nz(filt[r-1],0)
        sum   =  sign * mult * matPo * prev
        results := results + sum
        sign  := sign * -1
    results := results - n
    results
    
variant_gauss(Price, Lag, Poles)=>
    Pi = 2 * asin(1)
    beta = (1 - cos(2 * Pi / Lag)) / ( pow (sqrt(2), 2.0 / Poles) - 1)
    alfa = -beta + sqrt(beta * beta +  2 * beta)
    pre = nz(Price, 0) * pow(alfa, Poles) 
    filter = pre
    result = n > 0 ?  getPoles(nz(filter[1]), Poles, alfa) : 0
    filter := pre + result

variant_mg(src, len)=>
    mg = 0.0
    mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
    mg
    
variant_sinewma(src, length) =>
    PI = 2 * asin(1)
    sum = 0.0
    weightSum = 0.0
    for i = 0 to length - 1
        weight = sin(i * PI / (length + 1))
        sum := sum + nz(src[i]) * weight
        weightSum := weightSum + weight
    sinewma = sum / weightSum
    sinewma
    
variant_geoMean(price, per)=>
    gmean = pow(price, 1.0/per)
    gx = for i = 1 to per-1
        gmean := gmean * pow(price[i], 1.0/per)
        gmean
    ggx = n > per? gx : price    
    ggx


variant_butt2pole(pr, p1)=>
    Pi = 2 * asin(1)
    DTR = Pi / 180    
    a1 = exp(-sqrt(2) * Pi / p1)
    b1 = 2 * a1 * cos(DTR * (sqrt(2) * 180 / p1))
    cf1 = (1 - b1 + a1 * a1) / 4
    cf2 = b1
    cf3 = -a1 * a1
    butt_filt = pr
    butt_filt := cf1 * (pr + 2 * nz(pr[1]) + nz(pr[2])) + cf2 * nz(butt_filt[1]) + cf3 * nz(butt_filt[2])

variant_lowPass(src, len)=>
    LP = src
    sr = src
    a = 2.0 / (1.0 + len)
    LP := (a - 0.25 * a * a) * sr + 0.5 * a * a * nz(sr[1]) - (a - 0.75 * a * a) * nz(sr[2]) + 2.0 * (1.0 - a) * nz(LP[1]) - (1.0 - a) * (1.0 - a) * nz(LP[2])
    LP


variant_sma(src, len) =>
    sum = 0.0
    for i = 0 to len - 1
        sum := sum + src[i] / len
    sum

variant_trima(src, length) =>
    len = ceil((length + 1) * 0.5)
    trima =  sum(sma(src, len), len)/len
    trima
 
 
    
variant(type, src, len) =>
      type=="EMA"   ? ema(src, len) : 
      type=="LowPass" ? variant_lowPass(src, len) :  
      type=="Linreg"  ? linreg(src, len, 0) : 
      type=="Gaussian"  ? variant_gauss(src, len, gauss_poles) :
      type=="Sine_WMA"  ? variant_sinewma(src, len) :
      
      type=="Geometric_Mean"  ? variant_geoMean(src, len) :
      
      type=="Butterworth_2Pole" ? variant_butt2pole(src, len) : 
      type=="Smoothed_MA"  ? variant_smoothed(src, len) :
      type=="Triangular_MA"  ? variant_trima(src, len) : 
      type=="McGuinley" ? variant_mg(src, len) : 
      type=="DEMA"  ? variant_doubleema(src, len):  
      type=="Super_Smoother"  ? variant_supersmoother(src, len) : 
      type=="Zero_Lag"  ? variant_zerolagema(src, len) :  
      type=="Wilders"? variant_WiMA(src, len) : variant_sma(src, len)


c1=#44E2D6
c2=#DDD10D
c3=#0AA368
c4=#E0670E
c5=#AB40B2

cRed = #F93A00


ma1 =  variant(type, ssrc, len1)
ma2 =  variant(type, ssrc, len2)
ma3 =  variant(type, ssrc, len3)
ma4 =  variant(type, ssrc, len4)
ma5 =  variant(type, ssrc, len5)
ma6 =  variant(type, ssrc, lenrib)
ma7 =  variant(type, ssrc, lenrib2)
ma8 =  variant(type, ssrc, lenrib3)
ma9 =  variant(type, ssrc, lenrib4)

col1 = c1
col2 = c2
col3 = c3
col4 = c4
col5 = c5

p1 = plot(onOff1 ? ma1 : na, title = "MA 1",  color = col1,  linewidth = linew, style = linebr)
p2 = plot(onOff2 ? ma2 : na, title = "MA 2",  color = col2,  linewidth = linew, style = linebr)
p3 = plot(onOff3 ? ma3 : na, title = "MA 3",  color = col3,  linewidth = linew, style = linebr)
p4 = plot(onOff4 ? ma4 : na, title = "MA 4",  color = col4,  linewidth = linew, style = linebr)
p5 = plot(onOff5 ? ma5 : na, title = "MA 5",  color = col5,  linewidth = linew, style = linebr)
p6 = plot(onOff6 ? ma6 : na, title = "MA 6",  color = col5,  linewidth = linew, style = linebr)
p7 = plot(onOff7 ? ma7 : na, title = "MA 7",  color = col5,  linewidth = linew, style = linebr)
p8 = plot(onOff8 ? ma8 : na, title = "MA 8",  color = col5,  linewidth = linew, style = linebr)
p9 = plot(onOff9 ? ma9 : na, title = "MA 9",  color = col5,  linewidth = linew, style = linebr)

longCond = crossover(ma2, ma3)
if longCond and testPeriod()
    strategy.entry("buy", strategy.long, qty = orderQty, when = open > ma2[1])

shortCond = crossunder(ma2, ma3)
if shortCond and testPeriod()
    strategy.entry("sell", strategy.short, qty = orderQty, when = open < ma2[1])

plotshape(series=plotInd? longCond : na, title="P", style=shape.triangleup, location=location.belowbar, color=green, text="P", size=size.small)   
plotshape(series=plotInd? shortCond : na, title="N", style=shape.triangledown, location=location.abovebar, color=red, text="N", size=size.small)