Esta estrategia calcula los promedios móviles de diferentes períodos y emite señales comerciales cuando el promedio móvil de período más corto cruza o cruza por debajo del promedio móvil de período más largo. Pertenece al típico sistema de cruce de promedios móviles. La estrategia admite posiciones largas y cortas para lograr el comercio bidireccional.
La estrategia juzga las tendencias del mercado y genera señales comerciales basadas en el cruce entre los promedios móviles de diferentes períodos. Utiliza tres líneas de promedio móvil de 8 períodos, 13 períodos y 21 períodos, donde la línea de 8 períodos es la línea de período más corta y la línea de 21 períodos es la línea de período más larga. Una señal larga se activa cuando la línea de 8 períodos cruza la línea de 21 períodos. Una señal corta se activa cuando la línea de 8 períodos cruza por debajo de la línea de 21 períodos.
En la ejecución real de la negociación, la estrategia también incluye una condición de filtrado para evitar quedar atrapado en mercados agitados. Solo coloca órdenes cuando el precio de cierre es más alto (señal larga) o más bajo (señal corta) que el punto de cruce. Esto puede filtrar efectivamente algunas señales falsas.
La estrategia tiene una lógica clara de usar un cruce de promedios móviles simples para determinar las relaciones entre las tendencias a corto y largo plazo y capturar oportunidades de rotación. Apoya el comercio bidireccional y es fácil de entender y optimizar.
/*backtest start: 2022-12-05 00:00:00 end: 2023-12-11 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 //Converted to strategy by shawnteoh strategy(title = "MA Emperor insiliconot Strategy" , overlay=true, pyramiding=1, precision=8) strat_dir_input = input(title="Strategy Direction", defval="long", options=["long", "short", "all"]) strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all strategy.risk.allow_entry_in(strat_dir_value) // Testing start dates testStartYear = input(2020, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) //Stop date if you want to use a specific range of dates testStopYear = input(2030, "Backtest Stop Year") testStopMonth = input(12, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) // Order size orderQty = input(1, "Order quantity", type = float) // Plot indicator plotInd = input(false, "Plot indicators?", type = bool) testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false haClose = close haOpen = open haHigh = high haLow = low haClose := (open + high + low + close) / 4 haOpen := (nz(haOpen[1]) + nz(haClose[1])) / 2 haHigh := max(high, max(haOpen, haClose)) haLow := min(low , min(haOpen, haClose)) ssrc = close ha = false o = ha ? haOpen : open c = ha ? haClose : close h = ha ? haHigh : high l = ha ? haLow : low ssrc := ssrc == close ? ha ? haClose : c : ssrc ssrc := ssrc == open ? ha ? haOpen : o : ssrc ssrc := ssrc == high ? ha ? haHigh : h : ssrc ssrc := ssrc == low ? ha ? haLow : l : ssrc ssrc := ssrc == hl2 ? ha ? (haHigh + haLow) / 2 : hl2 : ssrc ssrc := ssrc == hlc3 ? ha ? (haHigh + haLow + haClose) / 3 : hlc3 : ssrc ssrc := ssrc == ohlc4 ? ha ? (haHigh + haLow + haClose+ haOpen) / 4 : ohlc4 : ssrc type = input(defval = "EMA", title = "Type", options = ["Butterworth_2Pole", "DEMA", "EMA", "Gaussian", "Geometric_Mean", "LowPass", "McGuinley", "SMA", "Sine_WMA", "Smoothed_MA", "Super_Smoother", "Triangular_MA", "Wilders", "Zero_Lag"]) len1=input(8, title ="MA 1") len2=input(13, title = "MA 2") len3=input(21, title = "MA 3") len4=input(55, title = "MA 4") len5=input(89, title = "MA 5") lenrib=input(120, title = "IB") lenrib2=input(121, title = "2B") lenrib3=input(200, title = "21b") lenrib4=input(221, title = "22b") onOff1 = input(defval=true, title="Enable 1") onOff2 = input(defval=true, title="Enable 2") onOff3 = input(defval=true, title="Enable 3") onOff4 = input(defval=false, title="Enable 4") onOff5 = input(defval=false, title="Enable 5") onOff6 = input(defval=false, title="Enable 6") onOff7 = input(defval=false, title="Enable 7") onOff8 = input(defval=false, title="Enable x") onOff9 = input(defval=false, title="Enable x") gauss_poles = input(3, "*** Gaussian poles ***", minval = 1, maxval = 14) linew = 2 shapes = false variant_supersmoother(src,len) => Pi = 2 * asin(1) a1 = exp(-1.414* Pi / len) b1 = 2*a1*cos(1.414* Pi / len) c2 = b1 c3 = (-a1)*a1 c1 = 1 - c2 - c3 v9 = 0.0 v9 := c1*(src + nz(src[1])) / 2 + c2*nz(v9[1]) + c3*nz(v9[2]) v9 variant_smoothed(src,len) => v5 = 0.0 v5 := na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len v5 variant_zerolagema(src, len) => price = src l = (len - 1) / 2 d = (price + (price - price[l])) z = ema(d, len) z variant_doubleema(src,len) => v2 = ema(src, len) v6 = 2 * v2 - ema(v2, len) v6 variant_WiMA(src, length) => MA_s= nz(src) MA_s:=(src + nz(MA_s[1] * (length-1)))/length MA_s fact(num)=> a = 1 nn = num <= 1 ? 1 : num for i = 1 to nn a := a * i a getPoles(f, Poles, alfa)=> filt = f sign = 1 results = 0 + n//tv series spoofing for r = 1 to max(min(Poles, n),1) mult = fact(Poles) / (fact(Poles - r) * fact(r)) matPo = pow(1 - alfa, r) prev = nz(filt[r-1],0) sum = sign * mult * matPo * prev results := results + sum sign := sign * -1 results := results - n results variant_gauss(Price, Lag, Poles)=> Pi = 2 * asin(1) beta = (1 - cos(2 * Pi / Lag)) / ( pow (sqrt(2), 2.0 / Poles) - 1) alfa = -beta + sqrt(beta * beta + 2 * beta) pre = nz(Price, 0) * pow(alfa, Poles) filter = pre result = n > 0 ? getPoles(nz(filter[1]), Poles, alfa) : 0 filter := pre + result variant_mg(src, len)=> mg = 0.0 mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4)) mg variant_sinewma(src, length) => PI = 2 * asin(1) sum = 0.0 weightSum = 0.0 for i = 0 to length - 1 weight = sin(i * PI / (length + 1)) sum := sum + nz(src[i]) * weight weightSum := weightSum + weight sinewma = sum / weightSum sinewma variant_geoMean(price, per)=> gmean = pow(price, 1.0/per) gx = for i = 1 to per-1 gmean := gmean * pow(price[i], 1.0/per) gmean ggx = n > per? gx : price ggx variant_butt2pole(pr, p1)=> Pi = 2 * asin(1) DTR = Pi / 180 a1 = exp(-sqrt(2) * Pi / p1) b1 = 2 * a1 * cos(DTR * (sqrt(2) * 180 / p1)) cf1 = (1 - b1 + a1 * a1) / 4 cf2 = b1 cf3 = -a1 * a1 butt_filt = pr butt_filt := cf1 * (pr + 2 * nz(pr[1]) + nz(pr[2])) + cf2 * nz(butt_filt[1]) + cf3 * nz(butt_filt[2]) variant_lowPass(src, len)=> LP = src sr = src a = 2.0 / (1.0 + len) LP := (a - 0.25 * a * a) * sr + 0.5 * a * a * nz(sr[1]) - (a - 0.75 * a * a) * nz(sr[2]) + 2.0 * (1.0 - a) * nz(LP[1]) - (1.0 - a) * (1.0 - a) * nz(LP[2]) LP variant_sma(src, len) => sum = 0.0 for i = 0 to len - 1 sum := sum + src[i] / len sum variant_trima(src, length) => len = ceil((length + 1) * 0.5) trima = sum(sma(src, len), len)/len trima variant(type, src, len) => type=="EMA" ? ema(src, len) : type=="LowPass" ? variant_lowPass(src, len) : type=="Linreg" ? linreg(src, len, 0) : type=="Gaussian" ? variant_gauss(src, len, gauss_poles) : type=="Sine_WMA" ? variant_sinewma(src, len) : type=="Geometric_Mean" ? variant_geoMean(src, len) : type=="Butterworth_2Pole" ? variant_butt2pole(src, len) : type=="Smoothed_MA" ? variant_smoothed(src, len) : type=="Triangular_MA" ? variant_trima(src, len) : type=="McGuinley" ? variant_mg(src, len) : type=="DEMA" ? variant_doubleema(src, len): type=="Super_Smoother" ? variant_supersmoother(src, len) : type=="Zero_Lag" ? variant_zerolagema(src, len) : type=="Wilders"? variant_WiMA(src, len) : variant_sma(src, len) c1=#44E2D6 c2=#DDD10D c3=#0AA368 c4=#E0670E c5=#AB40B2 cRed = #F93A00 ma1 = variant(type, ssrc, len1) ma2 = variant(type, ssrc, len2) ma3 = variant(type, ssrc, len3) ma4 = variant(type, ssrc, len4) ma5 = variant(type, ssrc, len5) ma6 = variant(type, ssrc, lenrib) ma7 = variant(type, ssrc, lenrib2) ma8 = variant(type, ssrc, lenrib3) ma9 = variant(type, ssrc, lenrib4) col1 = c1 col2 = c2 col3 = c3 col4 = c4 col5 = c5 p1 = plot(onOff1 ? ma1 : na, title = "MA 1", color = col1, linewidth = linew, style = linebr) p2 = plot(onOff2 ? ma2 : na, title = "MA 2", color = col2, linewidth = linew, style = linebr) p3 = plot(onOff3 ? ma3 : na, title = "MA 3", color = col3, linewidth = linew, style = linebr) p4 = plot(onOff4 ? ma4 : na, title = "MA 4", color = col4, linewidth = linew, style = linebr) p5 = plot(onOff5 ? ma5 : na, title = "MA 5", color = col5, linewidth = linew, style = linebr) p6 = plot(onOff6 ? ma6 : na, title = "MA 6", color = col5, linewidth = linew, style = linebr) p7 = plot(onOff7 ? ma7 : na, title = "MA 7", color = col5, linewidth = linew, style = linebr) p8 = plot(onOff8 ? ma8 : na, title = "MA 8", color = col5, linewidth = linew, style = linebr) p9 = plot(onOff9 ? ma9 : na, title = "MA 9", color = col5, linewidth = linew, style = linebr) longCond = crossover(ma2, ma3) if longCond and testPeriod() strategy.entry("buy", strategy.long, qty = orderQty, when = open > ma2[1]) shortCond = crossunder(ma2, ma3) if shortCond and testPeriod() strategy.entry("sell", strategy.short, qty = orderQty, when = open < ma2[1]) plotshape(series=plotInd? longCond : na, title="P", style=shape.triangleup, location=location.belowbar, color=green, text="P", size=size.small) plotshape(series=plotInd? shortCond : na, title="N", style=shape.triangledown, location=location.abovebar, color=red, text="N", size=size.small)