Esta estrategia utiliza múltiples indicadores de promedio móvil y combina los tiempos de entrada y salida basados en las horas de negociación para implementar la negociación cuantitativa.
Esta estrategia incorpora 9 tipos de promedios móviles, incluidos SMA, EMA, WMA, etc. Para la entrada larga, el precio de cierre cruza por encima del promedio móvil seleccionado mientras que el cierre anterior estaba por debajo del promedio móvil. Para la entrada corta, el precio de cierre cruza por debajo del promedio móvil mientras que el cierre anterior estaba por encima.
Esta estrategia combina la esencia de múltiples promedios móviles y los usuarios pueden elegir diferentes parámetros basados en condiciones de mercado variables. Solo entra cuando se confirma una tendencia, evitando los golpes. Además, limita las entradas solo al lunes y sale el domingo cerrado con stop loss / take profit, limitando las operaciones máximas por semana y controlando el riesgo comercial.
La estrategia se basa principalmente en las medias móviles para determinar la tendencia, por lo que se enfrenta al riesgo de ser atrapado en reversiones.
Para hacer frente a estos riesgos, los parámetros promedio dinámicos podrían utilizarse para acortar la duración durante los períodos de variación.
La estrategia puede mejorarse de las siguientes maneras:
Añadir algoritmos de stop loss/take profit adaptativos para ajustar dinámicamente los niveles.
Incorporar modelos de aprendizaje automático para medir mejor la tendencia en mercados agitados.
Refine la lógica de entrada y salida para capturar más oportunidades comerciales.
Esta estrategia combina múltiples indicadores de promedio móvil para determinar la dirección de la tendencia y limita las operaciones semanales máximas con reglas de entrada de lunes y salida de domingo.
/*backtest start: 2023-12-01 00:00:00 end: 2023-12-31 23:59:59 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © exlux99 //@version=5 strategy('Time MA strategy ', overlay=true) longEntry = input.bool(true, group="Type of Entries") shortEntry = input.bool(false, group="Type of Entries") //==========DEMA getDEMA(src, len) => dema = 2 * ta.ema(src, len) - ta.ema(ta.ema(src, len), len) dema //==========HMA getHULLMA(src, len) => hullma = ta.wma(2 * ta.wma(src, len / 2) - ta.wma(src, len), math.round(math.sqrt(len))) hullma //==========KAMA getKAMA(src, len, k1, k2) => change = math.abs(ta.change(src, len)) volatility = math.sum(math.abs(ta.change(src)), len) efficiency_ratio = volatility != 0 ? change / volatility : 0 kama = 0.0 fast = 2 / (k1 + 1) slow = 2 / (k2 + 1) smooth_const = math.pow(efficiency_ratio * (fast - slow) + slow, 2) kama := nz(kama[1]) + smooth_const * (src - nz(kama[1])) kama //==========TEMA getTEMA(src, len) => e = ta.ema(src, len) tema = 3 * (e - ta.ema(e, len)) + ta.ema(ta.ema(e, len), len) tema //==========ZLEMA getZLEMA(src, len) => zlemalag_1 = (len - 1) / 2 zlemadata_1 = src + src - src[zlemalag_1] zlema = ta.ema(zlemadata_1, len) zlema //==========FRAMA getFRAMA(src, len) => Price = src N = len if N % 2 != 0 N := N + 1 N N1 = 0.0 N2 = 0.0 N3 = 0.0 HH = 0.0 LL = 0.0 Dimen = 0.0 alpha = 0.0 Filt = 0.0 N3 := (ta.highest(N) - ta.lowest(N)) / N HH := ta.highest(N / 2 - 1) LL := ta.lowest(N / 2 - 1) N1 := (HH - LL) / (N / 2) HH := high[N / 2] LL := low[N / 2] for i = N / 2 to N - 1 by 1 if high[i] > HH HH := high[i] HH if low[i] < LL LL := low[i] LL N2 := (HH - LL) / (N / 2) if N1 > 0 and N2 > 0 and N3 > 0 Dimen := (math.log(N1 + N2) - math.log(N3)) / math.log(2) Dimen alpha := math.exp(-4.6 * (Dimen - 1)) if alpha < .01 alpha := .01 alpha if alpha > 1 alpha := 1 alpha Filt := alpha * Price + (1 - alpha) * nz(Filt[1], 1) if bar_index < N + 1 Filt := Price Filt Filt //==========VIDYA getVIDYA(src, len) => mom = ta.change(src) upSum = math.sum(math.max(mom, 0), len) downSum = math.sum(-math.min(mom, 0), len) out = (upSum - downSum) / (upSum + downSum) cmo = math.abs(out) alpha = 2 / (len + 1) vidya = 0.0 vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo) vidya //==========JMA getJMA(src, len, power, phase) => phase_ratio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5 beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2) alpha = math.pow(beta, power) MA1 = 0.0 Det0 = 0.0 MA2 = 0.0 Det1 = 0.0 JMA = 0.0 MA1 := (1 - alpha) * src + alpha * nz(MA1[1]) Det0 := (src - MA1) * (1 - beta) + beta * nz(Det0[1]) MA2 := MA1 + phase_ratio * Det0 Det1 := (MA2 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(Det1[1]) JMA := nz(JMA[1]) + Det1 JMA //==========T3 getT3(src, len, vFactor) => ema1 = ta.ema(src, len) ema2 = ta.ema(ema1, len) ema3 = ta.ema(ema2, len) ema4 = ta.ema(ema3, len) ema5 = ta.ema(ema4, len) ema6 = ta.ema(ema5, len) c1 = -1 * math.pow(vFactor, 3) c2 = 3 * math.pow(vFactor, 2) + 3 * math.pow(vFactor, 3) c3 = -6 * math.pow(vFactor, 2) - 3 * vFactor - 3 * math.pow(vFactor, 3) c4 = 1 + 3 * vFactor + math.pow(vFactor, 3) + 3 * math.pow(vFactor, 2) T3 = c1 * ema6 + c2 * ema5 + c3 * ema4 + c4 * ema3 T3 //==========TRIMA getTRIMA(src, len) => N = len + 1 Nm = math.round(N / 2) TRIMA = ta.sma(ta.sma(src, Nm), Nm) TRIMA src = input.source(close, title='Source', group='Parameters') len = input.int(17, minval=1, title='Moving Averages', group='Parameters') out_ma_source = input.string(title='MA Type', defval='ALMA', options=['SMA', 'EMA', 'WMA', 'ALMA', 'SMMA', 'LSMA', 'VWMA', 'DEMA', 'HULL', 'KAMA', 'FRAMA', 'VIDYA', 'JMA', 'TEMA', 'ZLEMA', 'T3', 'TRIM'], group='Parameters') out_ma = out_ma_source == 'SMA' ? ta.sma(src, len) : out_ma_source == 'EMA' ? ta.ema(src, len) : out_ma_source == 'WMA' ? ta.wma(src, len) : out_ma_source == 'ALMA' ? ta.alma(src, len, 0.85, 6) : out_ma_source == 'SMMA' ? ta.rma(src, len) : out_ma_source == 'LSMA' ? ta.linreg(src, len, 0) : out_ma_source == 'VWMA' ? ta.vwma(src, len) : out_ma_source == 'DEMA' ? getDEMA(src, len) : out_ma_source == 'HULL' ? ta.hma(src, len) : out_ma_source == 'KAMA' ? getKAMA(src, len, 2, 30) : out_ma_source == 'FRAMA' ? getFRAMA(src, len) : out_ma_source == 'VIDYA' ? getVIDYA(src, len) : out_ma_source == 'JMA' ? getJMA(src, len, 2, 50) : out_ma_source == 'TEMA' ? getTEMA(src, len) : out_ma_source == 'ZLEMA' ? getZLEMA(src, len) : out_ma_source == 'T3' ? getT3(src, len, 0.7) : out_ma_source == 'TRIM' ? getTRIMA(src, len) : na plot(out_ma) long = close> out_ma and close[1] < out_ma and dayofweek==dayofweek.monday short = close< out_ma and close[1] > out_ma and dayofweek==dayofweek.monday stopPer = input.float(10.0, title='LONG Stop Loss % ', group='Fixed Risk Management') / 100 takePer = input.float(30.0, title='LONG Take Profit %', group='Fixed Risk Management') / 100 stopPerShort = input.float(5.0, title='SHORT Stop Loss % ', group='Fixed Risk Management') / 100 takePerShort = input.float(10.0, title='SHORT Take Profit %', group='Fixed Risk Management') / 100 longStop = strategy.position_avg_price * (1 - stopPer) longTake = strategy.position_avg_price * (1 + takePer) shortStop = strategy.position_avg_price * (1 + stopPerShort) shortTake = strategy.position_avg_price * (1 - takePerShort) // strategy.risk.max_intraday_filled_orders(2) // After 10 orders are filled, no more strategy orders will be placed (except for a market order to exit current open market position, if there is any). if(longEntry) strategy.entry("long",strategy.long,when=long ) strategy.exit('LONG EXIT', "long", limit=longTake, stop=longStop) strategy.close("long",when=dayofweek==dayofweek.sunday) if(shortEntry) strategy.entry("short",strategy.short,when=short ) strategy.exit('SHORT EXIT', "short", limit=shortTake, stop=shortStop) strategy.close("short",when=dayofweek==dayofweek.sunday)