Estrategias de negociación cuantificadas basadas en líneas dinámicas uniformes de múltiples indicadores

El autor:¿ Qué pasa?, fecha: 2024-02-04 14:42:05
Las etiquetas:

基于多标的动态均线的量化交易策略

Resumen

Esta estrategia utiliza una combinación de señales de varios indicadores técnicos para realizar operaciones dinámicas de activos como acciones, monedas digitales, etc. La estrategia identifica automáticamente las tendencias del mercado y realiza un seguimiento de tendencias.

Principios estratégicos

Esta estrategia utiliza principalmente varios indicadores como la media móvil, el indicador de fuerza y de debilidad relativa (RSI), el ancho de onda verdadero medio (ATR) y el indicador de movimiento direccional (ADX) para generar señales comerciales a través de una combinación de indicadores.

Concretamente, la estrategia utiliza dos medias móviles para generar una señal de doble horquilla; una línea rápida tiene 10 días de duración y una línea lenta tiene 50 días de duración; una línea rápida genera una señal de compra cuando rompe la línea lenta desde abajo; una línea rápida genera una señal de venta cuando rompe la línea lenta desde arriba. El sistema de medias móviles puede identificar eficazmente el cambio de tendencia de la línea larga en el mercado.

Sobre la base de dos medias móviles, la estrategia también introduce indicadores del RSI para identificar señales de tendencia y evitar falsos breaks. El RSI determina la fuerza del mercado a través de los valores negativos de líneas rápidas y lentas, con un Length de 14.

Además, la estrategia utiliza el indicador ATR para ajustar automáticamente el nivel de stop loss. El indicador ATR refleja eficazmente el grado de volatilidad del mercado. Cuando la volatilidad del mercado aumenta, la estrategia establece el nivel de stop loss más ancho, lo que reduce la posibilidad de que se produzca un stop loss.

Finalmente, la estrategia determina la intensidad de la tendencia con el indicador ADX. ADX determina la intensidad de la tendencia con el valor negativo del indicador DI + y el valor negativo del indicador DI-.

La combinación de varios indicadores puede hacer que la estrategia sea más cautelosa al enviar señales de negociación para evitar ser engañada por falsas señales en el mercado y obtener una mayor probabilidad de ganar.

Las ventajas estratégicas

La estrategia tiene las siguientes ventajas:

  1. Combinación de varios indicadores, análisis integral del mercado, mejoramiento de la precisión de las decisiones

La combinación de múltiples indicadores, como el promedio, el RSI, el ATR, el ADX, etc., puede mejorar la precisión de las decisiones de negociación y evitar los errores causados por un solo indicador.

  1. Ajuste automático de pérdidas, control de riesgos

El nivel de stop loss se ajusta automáticamente según la volatilidad del mercado, lo que reduce la probabilidad de que se desencadene un stop loss y controla eficazmente el riesgo comercial.

  1. Determinar la intensidad de la tendencia y reducir las operaciones inversas

El comercio real después de determinar la intensidad de la tendencia con el indicador ADX puede reducir las pérdidas de operaciones inversas.

  1. Parámetros para optimizar el espacio

Los parámetros de la estrategia, como la longitud de la línea media, la longitud del RSI, el ciclo ATR, el ciclo ADX, etc., se pueden optimizar para adaptarse a diferentes mercados.

  1. Proteger las ganancias de largo plazo

Mediante un sistema de media rápida que determina la tendencia de la línea larga y reduce el impacto del ruido de la línea corta con indicadores como el RSI, se puede mantener la línea larga en la tendencia para obtener mayores ganancias.

Riesgos y medidas

La estrategia también presenta algunos riesgos, los principales incluyen:

  1. El riesgo de optimización de parámetros

La combinación de múltiples parámetros aumenta la dificultad de la optimización, y la combinación inadecuada de parámetros puede causar un deterioro de los efectos de la estrategia. Este riesgo se puede mitigar con una revisión y un ajuste de parámetros más completos.

  1. Riesgo de falla de los indicadores

Los indicadores técnicos tienen su estado de mercado aplicable. Cuando el mercado entra en un estado especial, los indicadores involucrados en la estrategia pueden fallar al mismo tiempo. Los riesgos que conlleva este evento BLACK SWAN requieren atención.

  1. El riesgo de pérdida de la cartera vacía

Las estrategias permiten el uso de operaciones en blanco. Las operaciones en blanco tienen un riesgo de pérdida ilimitada. Este riesgo puede reducirse mediante la configuración de un stop loss.

  1. El riesgo de la inversión

Cuando la tendencia se invierte, las señales del indicador no pueden reaccionar rápidamente, lo que puede generar pérdidas inversas. Se pueden reducir adecuadamente algunos parámetros del indicador para mejorar la sensibilidad.

Optimizar el pensamiento

La estrategia también tiene espacio para una mayor optimización, y las ideas principales incluyen:

  1. Aumentar el peso de los indicadores de adaptación

Al analizar la relevancia de los diferentes indicadores y el estado del mercado, se pueden diseñar mecanismos para ajustar dinámicamente los pesos de cada indicador para mejorar la eficacia de la decisión en diferentes entornos de mercado.

  1. Aumentar el modelo de aprendizaje en profundidad

El uso de modelos como el aprendizaje profundo para predecir la dirección de los cambios en los precios, ayuda a diseñar las reglas de la decisión artificialmente y mejora la precisión de la decisión estratégica.

  1. Optimización de los parámetros de adaptación

El diseño de módulos de optimización automática de parámetros para datos históricos de ventanas deslizantes permite ajustar dinámicamente los parámetros de los indicadores para que las estrategias se adapten mejor a los cambios en el mercado.

  1. Introducción del análisis del ciclo de crecimiento

Incorporar métodos de análisis del ciclo de crecimiento, como la teoría de las ondas, para ayudar a juzgar la tendencia de tendencia media y larga y mejorar la probabilidad de obtener ganancias.

Resumen

La estrategia utiliza en conjunto varios indicadores como la línea media móvil, RSI, ATR, ADX, etc. para diseñar un conjunto más completo de reglas de decisión, tanto para determinar la tendencia de la línea media a través del sistema como para reducir la interferencia de ruido a través de indicadores de ciclo corto como RSI. Al mismo tiempo, la estrategia tiene un mayor margen de optimización y se espera obtener mejores resultados. En general, la estrategia utiliza una combinación de indicadores para mejorar la eficacia de la decisión, controlar el riesgo y merecer más investigación y aplicación.


/*backtest
start: 2023-01-28 00:00:00
end: 2024-02-03 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code to my testing
// © sgb

//@version=5


strategy(title='Soren test 2', overlay=true, initial_capital=100, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.percent_of_equity, default_qty_value=50, commission_value=0.04)

//SOURCE =============================================================================================================================================================================================================================================================================================================

src = input(open)

// INPUTS ============================================================================================================================================================================================================================================================================================================



//ADX --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ADX_options = input.string('MASANAKAMURA', title='Adx Type', options=['CLASSIC', 'MASANAKAMURA'], group='ADX')
ADX_len = input.int(38, title='Adx lenght', minval=1, group='ADX')
th = input.float(23, title='Adx Treshold', minval=0, step=0.5, group='ADX')

// Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

volume_f = input.float(1.2, title='Volume mult.', minval=0, step=0.1, group='Volume')
sma_length = input.int(35, title='Volume lenght', minval=1, group='Volume')

//RSI----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

len_3 = input.int(25, title='RSI lenght', group='Relative Strenght Indeks')
src_3 = input.source(low, title='RSI Source', group='Relative Strenght Indeks')
RSI_VWAP_length = input(25, title='Rsi vwap lenght')

// Range Filter ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

per_ = input.int(26, title='SAMPLING PERIOD', minval=1, group='Range Filter')
mult = input.float(2.3, title='RANGE MULTIPLIER', minval=0.1, step=0.1, group='Range Filter')

// Cloud --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

len = input.int(1, title='Cloud Length', group='Cloud')

//RMI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RMI_len = input.int(26, title='Rmi Lenght', minval=1, group='Relative Momentum Index')
mom = input.int(17, title='Rmi Momentum', minval=1, group='Relative Momentum Index')
RMI_os = input.int(33, title='Rmi oversold', minval=0, group='Relative Momentum Index')
RMI_ob = input.int(68, title='Rmi overbought', minval=0, group='Relative Momentum Index')


// Indicators Calculations ========================================================================================================================================================================================================================================================================================================

// Range Filter ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

var bool L_RF = na
var bool S_RF = na

Range_filter(_src, _per_, _mult) =>
    var float _upward = 0.0
    var float _downward = 0.0
    wper = _per_ * 2 - 1
    avrng = ta.ema(math.abs(_src - _src[1]), _per_)
    _smoothrng = ta.ema(avrng, wper) * _mult
    _filt = _src
    _filt := _src > nz(_filt[1]) ? _src - _smoothrng < nz(_filt[1]) ? nz(_filt[1]) : _src - _smoothrng : _src + _smoothrng > nz(_filt[1]) ? nz(_filt[1]) : _src + _smoothrng
    _upward := _filt > _filt[1] ? nz(_upward[1]) + 1 : _filt < _filt[1] ? 0 : nz(_upward[1])
    _downward := _filt < _filt[1] ? nz(_downward[1]) + 1 : _filt > _filt[1] ? 0 : nz(_downward[1])
    [_smoothrng, _filt, _upward, _downward]
[smoothrng, filt, upward, downward] = Range_filter(src, per_, mult)
hband = filt + smoothrng
lband = filt - smoothrng
L_RF := high > hband and upward > 0
S_RF := low < lband and downward > 0

//ADX-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

calcADX(_len) =>
    up = ta.change(high)
    down = -ta.change(low)
    plusDM = na(up) ? na : up > down and up > 0 ? up : 0
    minusDM = na(down) ? na : down > up and down > 0 ? down : 0
    truerange = ta.rma(ta.tr, _len)
    _plus = fixnan(100 * ta.rma(plusDM, _len) / truerange)
    _minus = fixnan(100 * ta.rma(minusDM, _len) / truerange)
    sum = _plus + _minus
    _adx = 100 * ta.rma(math.abs(_plus - _minus) / (sum == 0 ? 1 : sum), _len)
    [_plus, _minus, _adx]
calcADX_Masanakamura(_len) =>
    SmoothedTrueRange = 0.0
    SmoothedDirectionalMovementPlus = 0.0
    SmoothedDirectionalMovementMinus = 0.0
    TrueRange = math.max(math.max(high - low, math.abs(high - nz(close[1]))), math.abs(low - nz(close[1])))
    DirectionalMovementPlus = high - nz(high[1]) > nz(low[1]) - low ? math.max(high - nz(high[1]), 0) : 0
    DirectionalMovementMinus = nz(low[1]) - low > high - nz(high[1]) ? math.max(nz(low[1]) - low, 0) : 0
    SmoothedTrueRange := nz(SmoothedTrueRange[1]) - nz(SmoothedTrueRange[1]) / _len + TrueRange
    SmoothedDirectionalMovementPlus := nz(SmoothedDirectionalMovementPlus[1]) - nz(SmoothedDirectionalMovementPlus[1]) / _len + DirectionalMovementPlus
    SmoothedDirectionalMovementMinus := nz(SmoothedDirectionalMovementMinus[1]) - nz(SmoothedDirectionalMovementMinus[1]) / _len + DirectionalMovementMinus
    DIP = SmoothedDirectionalMovementPlus / SmoothedTrueRange * 100
    DIM = SmoothedDirectionalMovementMinus / SmoothedTrueRange * 100
    DX = math.abs(DIP - DIM) / (DIP + DIM) * 100
    adx = ta.sma(DX, _len)
    [DIP, DIM, adx]
[DIPlusC, DIMinusC, ADXC] = calcADX(ADX_len)
[DIPlusM, DIMinusM, ADXM] = calcADX_Masanakamura(ADX_len)

DIPlus = ADX_options == 'CLASSIC' ? DIPlusC : DIPlusM
DIMinus = ADX_options == 'CLASSIC' ? DIMinusC : DIMinusM
ADX = ADX_options == 'CLASSIC' ? ADXC : ADXM
L_adx = DIPlus > DIMinus and ADX > th
S_adx = DIPlus < DIMinus and ADX > th

// Volume -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Volume_condt = volume > ta.sma(volume, sma_length) * volume_f

//RSI------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

up_3 = ta.rma(math.max(ta.change(src_3), 0), len_3)
down_3 = ta.rma(-math.min(ta.change(src_3), 0), len_3)
rsi_3 = down_3 == 0 ? 100 : up_3 == 0 ? 0 : 100 - 100 / (1 + up_3 / down_3)
L_rsi = rsi_3 < 70
S_rsi = rsi_3 > 30
RSI_VWAP = ta.rsi(ta.vwap(close), RSI_VWAP_length)
RSI_VWAP_overSold = 13
RSI_VWAP_overBought = 68

L_VAP = ta.crossover(RSI_VWAP, RSI_VWAP_overSold)
S_VAP = ta.crossunder(RSI_VWAP, RSI_VWAP_overBought)

//Cloud --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

PI = 2 * math.asin(1)
hilbertTransform(src) =>
    0.0962 * src + 0.5769 * nz(src[2]) - 0.5769 * nz(src[4]) - 0.0962 * nz(src[6])
computeComponent(src, mesaPeriodMult) =>
    hilbertTransform(src) * mesaPeriodMult
computeAlpha(src, fastLimit, slowLimit) =>
    mesaPeriod = 0.0
    mesaPeriodMult = 0.075 * nz(mesaPeriod[1]) + 0.54
    smooth = 0.0
    smooth := (4 * src + 3 * nz(src[1]) + 2 * nz(src[2]) + nz(src[3])) / 10
    detrender = 0.0
    detrender := computeComponent(smooth, mesaPeriodMult)
    I1 = nz(detrender[3])
    Q1 = computeComponent(detrender, mesaPeriodMult)
    jI = computeComponent(I1, mesaPeriodMult)
    jQ = computeComponent(Q1, mesaPeriodMult)
    I2 = 0.0
    Q2 = 0.0
    I2 := I1 - jQ
    Q2 := Q1 + jI
    I2 := 0.2 * I2 + 0.8 * nz(I2[1])
    Q2 := 0.2 * Q2 + 0.8 * nz(Q2[1])
    Re = I2 * nz(I2[1]) + Q2 * nz(Q2[1])
    Im = I2 * nz(Q2[1]) - Q2 * nz(I2[1])
    Re := 0.2 * Re + 0.8 * nz(Re[1])
    Im := 0.2 * Im + 0.8 * nz(Im[1])
    if Re != 0 and Im != 0
        mesaPeriod := 2 * PI / math.atan(Im / Re)
        mesaPeriod
    if mesaPeriod > 1.5 * nz(mesaPeriod[1])
        mesaPeriod := 1.5 * nz(mesaPeriod[1])
        mesaPeriod
    if mesaPeriod < 0.67 * nz(mesaPeriod[1])
        mesaPeriod := 0.67 * nz(mesaPeriod[1])
        mesaPeriod
    if mesaPeriod < 6
        mesaPeriod := 6
        mesaPeriod
    if mesaPeriod > 50
        mesaPeriod := 50
        mesaPeriod
    mesaPeriod := 0.2 * mesaPeriod + 0.8 * nz(mesaPeriod[1])
    phase = 0.0
    if I1 != 0
        phase := 180 / PI * math.atan(Q1 / I1)
        phase
    deltaPhase = nz(phase[1]) - phase
    if deltaPhase < 1
        deltaPhase := 1
        deltaPhase
    alpha = fastLimit / deltaPhase
    if alpha < slowLimit
        alpha := slowLimit
        alpha
    [alpha, alpha / 2.0]
er = math.abs(ta.change(src, len)) / math.sum(math.abs(ta.change(src)), len)
[a, b] = computeAlpha(src, er, er * 0.1)
mama = 0.0
mama := a * src + (1 - a) * nz(mama[1])
fama = 0.0
fama := b * mama + (1 - b) * nz(fama[1])
alpha = math.pow(er * (b - a) + a, 2)
kama = 0.0
kama := alpha * src + (1 - alpha) * nz(kama[1])

L_cloud = kama > kama[1]
S_cloud = kama < kama[1]

// RMI -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RMI(len, m) =>
    up = ta.ema(math.max(close - close[m], 0), len)
    dn = ta.ema(math.max(close[m] - close, 0), len)
    RMI = dn == 0 ? 0 : 100 - 100 / (1 + up / dn)
    RMI
L_rmi = ta.crossover(RMI(RMI_len, mom), RMI_os)
S_rmi = ta.crossunder(RMI(RMI_len, mom), RMI_ob)



//STRATEGY ==========================================================================================================================================================================================================================================================================================================

L_1 = L_VAP and L_RF and not S_adx
S_1 = S_VAP and S_RF and not L_adx
L_2 = L_adx and Volume_condt and L_rsi and L_cloud
S_2 = S_adx and Volume_condt and S_rsi and S_cloud
L_3 = L_rmi and L_RF and not S_adx
S_3 = S_rmi and S_RF and not L_adx
L_basic_condt = L_1 or L_2 or L_3
S_basic_condt = S_1 or S_2 or S_3

var bool longCondition = na
var bool shortCondition = na
var float last_open_longCondition = na
var float last_open_shortCondition = na
var int last_longCondition = 0
var int last_shortCondition = 0
longCondition := L_basic_condt
shortCondition := S_basic_condt
last_open_longCondition := longCondition ? close : nz(last_open_longCondition[1])
last_open_shortCondition := shortCondition ? close : nz(last_open_shortCondition[1])
last_longCondition := longCondition ? time : nz(last_longCondition[1])
last_shortCondition := shortCondition ? time : nz(last_shortCondition[1])
in_longCondition = last_longCondition > last_shortCondition
in_shortCondition = last_shortCondition > last_longCondition

// SWAP-SL ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

var int last_long_sl = na
var int last_short_sl = na
sl = input.float(2, 'Swap % period', minval=0, step=0.1, group='strategy settings')
long_sl = ta.crossunder(low, (1 - sl / 100) * last_open_longCondition) and in_longCondition and not longCondition
short_sl = ta.crossover(high, (1 + sl / 100) * last_open_shortCondition) and in_shortCondition and not shortCondition
last_long_sl := long_sl ? time : nz(last_long_sl[1])
last_short_sl := short_sl ? time : nz(last_short_sl[1])
var bool CondIni_long_sl = 0
CondIni_long_sl := long_sl ? 1 : longCondition ? -1 : nz(CondIni_long_sl[1])
var bool CondIni_short_sl = 0
CondIni_short_sl := short_sl ? 1 : shortCondition ? -1 : nz(CondIni_short_sl[1])
Final_Long_sl = long_sl and nz(CondIni_long_sl[1]) == -1 and in_longCondition and not longCondition
Final_Short_sl = short_sl and nz(CondIni_short_sl[1]) == -1 and in_shortCondition and not shortCondition
var int sectionLongs = 0
sectionLongs := nz(sectionLongs[1])
var int sectionShorts = 0
sectionShorts := nz(sectionShorts[1])

// RE-ENTRY ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

if longCondition or Final_Long_sl
    sectionLongs += 1
    sectionShorts := 0
    sectionShorts
if shortCondition or Final_Short_sl
    sectionLongs := 0
    sectionShorts += 1
    sectionShorts
var float sum_long = 0.0
var float sum_short = 0.0

if longCondition
    sum_long := nz(last_open_longCondition) + nz(sum_long[1])
    sum_short := 0.0
    sum_short
if Final_Long_sl
    sum_long := (1 - sl / 100) * last_open_longCondition + nz(sum_long[1])
    sum_short := 0.0
    sum_short
if shortCondition
    sum_short := nz(last_open_shortCondition) + nz(sum_short[1])
    sum_long := 0.0
    sum_long
if Final_Short_sl
    sum_long := 0.0
    sum_short := (1 + sl / 100) * last_open_shortCondition + nz(sum_short[1])
    sum_short

var float Position_Price = 0.0
Position_Price := nz(Position_Price[1])
Position_Price := longCondition or Final_Long_sl ? sum_long / sectionLongs : shortCondition or Final_Short_sl ? sum_short / sectionShorts : na

//TP_1 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

tp = input.float(1.2, 'Tp-1 ', minval=0, step=0.1, group='strategy settings')
long_tp = ta.crossover(high, (1 + tp / 100) * fixnan(Position_Price)) and in_longCondition and not longCondition
short_tp = ta.crossunder(low, (1 - tp / 100) * fixnan(Position_Price)) and in_shortCondition and not shortCondition
var int last_long_tp = na
var int last_short_tp = na
last_long_tp := long_tp ? time : nz(last_long_tp[1])
last_short_tp := short_tp ? time : nz(last_short_tp[1])
Final_Long_tp = long_tp and last_longCondition > nz(last_long_tp[1])
Final_Short_tp = short_tp and last_shortCondition > nz(last_short_tp[1])
fixnan_1 = fixnan(Position_Price)
ltp = Final_Long_tp ? fixnan_1 * (1 + tp / 100) : na
fixnan_2 = fixnan(Position_Price)
stp = Final_Short_tp ? fixnan_2 * (1 - tp / 100) : na
if Final_Short_tp or Final_Long_tp
    sum_long := 0.0
    sum_short := 0.0
    sectionLongs := 0
    sectionShorts := 0
    sectionShorts
if Final_Long_tp
    CondIni_long_sl == 1
if Final_Short_tp
    CondIni_short_sl == 1


// COLORS & PLOTS --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ADX_COLOR = L_adx ? color.lime : S_adx ? color.red : color.orange
barcolor(color=ADX_COLOR)
hbandplot = plot(hband, title='RF HT', color=ADX_COLOR, transp=50)
lbandplot = plot(lband, title='RF LT', color=ADX_COLOR, transp=50)
fill(hbandplot, lbandplot, title='RF TR', color=ADX_COLOR, transp=90)
plotshape(longCondition, title='Long', style=shape.triangleup, location=location.belowbar, color=color.new(color.blue, 0), size=size.tiny)
plotshape(shortCondition, title='Short', style=shape.triangledown, location=location.abovebar, color=color.new(color.red, 0), size=size.tiny)

plot(ltp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false)
plot(stp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false)

//BACKTESTING--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


Q = 50
SL = input.float(0.4, 'StopLoss ', minval=0, step=0.1)

strategy.entry('long', strategy.long, when=longCondition)
strategy.entry('short', strategy.short, when=shortCondition)

strategy.exit('TP', 'long', qty_percent=Q, limit=fixnan(Position_Price) * (1 + tp / 100))
strategy.exit('TP', 'short', qty_percent=Q, limit=fixnan(Position_Price) * (1 - tp / 100))


strategy.exit('SL', 'long', stop=fixnan(Position_Price) * (1 - SL / 100))
strategy.exit('SL', 'short', stop=fixnan(Position_Price) * (1 + SL / 100))


//
//
//
//
//
//

// By SGB







Más contenido