L'article traite principalement des stratégies de négociation à haute fréquence, en mettant l'accent sur la modélisation cumulative des transactions et des chocs de prix. Il propose un modèle de position de vente au détail optimal, basé sur une compréhension des transactions et des chocs de prix, pour tenter de trouver la position de vente optimale.
L'article précédent a donné l'expression de la probabilité d'une transaction unique supérieure à une certaine valeur:
Nous nous intéressons également à la répartition des transactions sur une période de temps, qui devrait être intuitivement liée à la fréquence des transactions et des commandes par transaction.
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
trades = pd.read_csv('HOOKUSDT-aggTrades-2023-01-27.csv')
trades['date'] = pd.to_datetime(trades['transact_time'], unit='ms')
trades.index = trades['date']
buy_trades = trades[trades['is_buyer_maker']==False].copy()
buy_trades = buy_trades.groupby('transact_time').agg({
'agg_trade_id': 'last',
'price': 'last',
'quantity': 'sum',
'first_trade_id': 'first',
'last_trade_id': 'last',
'is_buyer_maker': 'last',
'date': 'last',
'transact_time':'last'
})
buy_trades['interval']=buy_trades['transact_time'] - buy_trades['transact_time'].shift()
buy_trades.index = buy_trades['date']
Si l'on combine les transactions individuelles à chaque intervalle de 1s en quantité de transactions, en supprimant les parties qui n'ont pas été traitées, et en les ajustant à la distribution des transactions individuelles ci-dessus, on obtient un meilleur résultat. Si l'on considère toutes les transactions dans 1s comme des transactions individuelles, le problème devient un problème résolu. Mais lorsque le cycle est prolongé (par rapport à la fréquence des transactions), l'erreur augmente.
df_resampled = buy_trades['quantity'].resample('1S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
buy_trades
Nom de l'entreprise | prix | quantité | première_échange_id | dernière_échange_id | est_acheteur_fabricant | date de sortie | Temps de transaction | l'intervalle | différent | |
---|---|---|---|---|---|---|---|---|---|---|
2023-01-27 00:00:00.161 | 1138369 | 2.901 | 54.3 | 3806199 | 3806201 | Faux | 2023-01-27 00:00:00.161 | 1674777600161 | N' est pas | 0.001 |
2023-01-27 00:00:04.140 | 1138370 | 2.901 | 291.3 | 3806202 | 3806203 | Faux | 2023-01-27 00:00:04.140 | 1674777604140 | 3979.0 | 0.000 |
2023-01-27 00:00:04.339 | 1138373 | 2.902 | 55.1 | 3806205 | 3806207 | Faux | 2023-01-27 00:00:04.339 | 1674777604339 | 199.0 | 0.001 |
2023-01-27 00:00:04.772 | 1138374 | 2.902 | 1032.7 | 3806208 | 3806223 | Faux | 2023-01-27 00:00:04.772 | 1674777604772 | 433.0 | 0.000 |
2023-01-27 00:00:05.562 | 1138375 | 2.901 | 3.5 | 3806224 | 3806224 | Faux | 2023-01-27 00:00:05.562 | 1674777605562 | 790.0 | 0.000 |
… | … | … | … | … | … | … | … | … | … | … |
2023-01-27 23:59:57.739 | 1544370 | 3.572 | 394.8 | 5074645 | 5074651 | Faux | 2023-01-27 23:59:57.739 | 1674863997739 | 1224.0 | 0.002 |
2023-01-27 23:59:57.902 | 1544372 | 3.573 | 177.6 | 5074652 | 5074655 | Faux | 2023-01-27 23:59:57.902 | 1674863997902 | 163.0 | 0.001 |
2023-01-27 23:59:58.107 | 1544373 | 3.573 | 139.8 | 5074656 | 5074656 | Faux | 2023-01-27 23:59:58.107 | 1674863998107 | 205.0 | 0.000 |
2023-01-27 23:59:58.302 | 1544374 | 3.573 | 60.5 | 5074657 | 5074657 | Faux | 2023-01-27 23:59:58.302 | 1674863998302 | 195.0 | 0.000 |
2023-01-27 23:59:59.894 | 1544376 | 3.571 | 12.1 | 5074662 | 5074664 | Faux | 2023-01-27 23:59:59.894 | 1674863999894 | 1592.0 | 0.000 |
#1s内的累计分布
depths = np.array(range(0, 3000, 5))
probabilities = np.array([np.mean(df_resampled['quantity'] > depth) for depth in depths])
mean = df_resampled['quantity'].mean()
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2.05)
probabilities_s = np.array([((1+20**(-depth/mean))*depth/mean+1)**(alpha) for depth in depths])
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities)
plt.plot(depths, probabilities_s)
plt.xlabel('Depth')
plt.ylabel('Probability of execution')
plt.title('Execution probability at different depths')
plt.grid(True)
df_resampled = buy_trades['quantity'].resample('30S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
depths = np.array(range(0, 12000, 20))
probabilities = np.array([np.mean(df_resampled['quantity'] > depth) for depth in depths])
mean = df_resampled['quantity'].mean()
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2.05)
probabilities_s = np.array([((1+20**(-depth/mean))*depth/mean+1)**(alpha) for depth in depths])
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2)
probabilities_s_2 = np.array([(depth/mean+1)**alpha for depth in depths]) # 无修正
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities,label='Probabilities (True)')
plt.plot(depths, probabilities_s, label='Probabilities (Simulation 1)')
plt.plot(depths, probabilities_s_2, label='Probabilities (Simulation 2)')
plt.xlabel('Depth')
plt.ylabel('Probability of execution')
plt.title('Execution probability at different depths')
plt.legend()
plt.grid(True)
Maintenant, une formule générale est résumée pour les distributions de transactions cumulées en différentes périodes et est adaptée à la distribution des transactions individuelles, sans utiliser de statistiques séparées à chaque fois.
où avg_interval indique l'intervalle moyen des transactions individuelles, et avg_interval_T indique l'intervalle moyen des intervalles à estimer, ce qui est un peu détourné. Si nous voulons estimer l'intervalle de 1s, nous devons estimer l'intervalle moyen des événements qui sont inclus dans les 1s. Si la probabilité d'arrivée d'une commande est conforme à la distribution de Parsons, il devrait être possible de l'estimer directement, mais l'écart réel est très important, ce qui ne sera pas expliqué ici.
Notez que la probabilité d'une transaction à un intervalle de temps supérieur à une valeur spécifique et la probabilité d'une transaction réelle à cette position dans la profondeur devraient être très différentes, car plus le temps d'attente est long, plus il est probable que le carnet d'ordres change et que les transactions entraînent également des changements de profondeur, de sorte que la probabilité d'une transaction à la même profondeur varie en temps réel avec la mise à jour des données.
df_resampled = buy_trades['quantity'].resample('2S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
depths = np.array(range(0, 6500, 10))
probabilities = np.array([np.mean(df_resampled['quantity'] > depth) for depth in depths])
mean = buy_trades['quantity'].mean()
adjust = buy_trades['interval'].mean() / 2620
alpha = np.log(np.mean(buy_trades['quantity'] > mean))/0.7178397931503168
probabilities_s = np.array([((1+20**(-depth*adjust/mean))*depth*adjust/mean+1)**(alpha) for depth in depths])
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities)
plt.plot(depths, probabilities_s)
plt.xlabel('Depth')
plt.ylabel('Probability of execution')
plt.title('Execution probability at different depths')
plt.grid(True)
Les données de transaction sont un trésor, et il y a beaucoup de données à extraire. Nous devrions être très attentifs à l'impact des commandes sur le prix, ce qui affecte la position des listes de la stratégie. De même, en fonction des données agrégées de transact_time, calculer la différence entre le dernier prix et le premier prix, si il n'y a qu'une seule commande, la différence est de 0.
Les résultats montrent que le taux d'absence de choc est de 77%, le taux de 1 tick est de 16,5%, le taux de 2 ticks est de 3,7%, le taux de 3 ticks est de 1,2%, et le taux de 4 ticks ou plus est inférieur à 1%.
Les volumes de transactions causant la différence de prix correspondante ont été statistiquement calculés, en éliminant les distorsions de choc trop importantes, et correspondent essentiellement à une relation linéaire, avec une fluctuation de prix d'environ 1 tick pour 1000 volumes. On peut également comprendre que la quantité moyenne de ticks près du prix par plateau est d'environ 1000.
diff_df = trades[trades['is_buyer_maker']==False].groupby('transact_time')['price'].agg(lambda x: abs(round(x.iloc[-1] - x.iloc[0],3)) if len(x) > 1 else 0)
buy_trades['diff'] = buy_trades['transact_time'].map(diff_df)
diff_counts = buy_trades['diff'].value_counts()
diff_counts[diff_counts>10]/diff_counts.sum()
0.000 0.769965
0.001 0.165527
0.002 0.037826
0.003 0.012546
0.004 0.005986
0.005 0.003173
0.006 0.001964
0.007 0.001036
0.008 0.000795
0.009 0.000474
0.010 0.000227
0.011 0.000187
0.012 0.000087
0.013 0.000080
Name: diff, dtype: float64
diff_group = buy_trades.groupby('diff').agg({
'quantity': 'mean',
'diff': 'last',
})
diff_group['quantity'][diff_group['diff']>0][diff_group['diff']<0.01].plot(figsize=(10,5),grid=True);
La différence ici est qu'il y aura des impacts négatifs, bien sûr, car il n'y a que des paiements statistiques ici, la position symétrique sera plus grande d'un tick. Continuer à observer la relation entre le volume de transactions et l'impact, ne résulte que des impacts statistiques supérieurs à 0, la conclusion est que les ordres individuels sont similaires, mais aussi une relation linéaire approximative, chaque tick nécessite environ 2000 volumes.
df_resampled = buy_trades.resample('2S').agg({
'price': ['first', 'last', 'count'],
'quantity': 'sum'
})
df_resampled['price_diff'] = round(df_resampled[('price', 'last')] - df_resampled[('price', 'first')],3)
df_resampled['price_diff'] = df_resampled['price_diff'].fillna(0)
result_df_raw = pd.DataFrame({
'price_diff': df_resampled['price_diff'],
'quantity_sum': df_resampled[('quantity', 'sum')],
'data_count': df_resampled[('price', 'count')]
})
result_df = result_df_raw[result_df_raw['price_diff'] != 0]
result_df['price_diff'][abs(result_df['price_diff'])<0.016].value_counts().sort_index().plot.bar(figsize=(10,5));
result_df['price_diff'].value_counts()[result_df['price_diff'].value_counts()>30]
0.001 7176
-0.001 3665
0.002 3069
-0.002 1536
0.003 1260
0.004 692
-0.003 608
0.005 391
-0.004 322
0.006 259
-0.005 192
0.007 146
-0.006 112
0.008 82
0.009 75
-0.007 75
-0.008 65
0.010 51
0.011 41
-0.010 31
Name: price_diff, dtype: int64
diff_group = result_df.groupby('price_diff').agg({ 'quantity_sum': 'mean'})
diff_group[(diff_group.index>0) & (diff_group.index<0.015)].plot(figsize=(10,5),grid=True);
Le premier demande le volume de transaction requis pour un changement de tick, mais n'est pas précis car il est basé sur l'hypothèse que le choc a déjà eu lieu.
Ici, les données sont échantillonnées par 1s, soit une étape par 100 quantités, et les variations de prix dans cette fourchette sont statistiquement calculées.
Dans ce cas, le point C représente la variation du prix et le point Q représente le volume de transactions.
df_resampled = buy_trades.resample('1S').agg({
'price': ['first', 'last', 'count'],
'quantity': 'sum'
})
df_resampled['price_diff'] = round(df_resampled[('price', 'last')] - df_resampled[('price', 'first')],3)
df_resampled['price_diff'] = df_resampled['price_diff'].fillna(0)
result_df_raw = pd.DataFrame({
'price_diff': df_resampled['price_diff'],
'quantity_sum': df_resampled[('quantity', 'sum')],
'data_count': df_resampled[('price', 'count')]
})
result_df = result_df_raw[result_df_raw['price_diff'] != 0]
df = result_df.copy()
bins = np.arange(0, 30000, 100) #
labels = [f'{i}-{i+100-1}' for i in bins[:-1]]
df.loc[:, 'quantity_group'] = pd.cut(df['quantity_sum'], bins=bins, labels=labels)
grouped = df.groupby('quantity_group')['price_diff'].mean()
grouped_df = pd.DataFrame(grouped).reset_index()
grouped_df['quantity_group_center'] = grouped_df['quantity_group'].apply(lambda x: (float(x.split('-')[0]) + float(x.split('-')[1])) / 2)
plt.figure(figsize=(10,5))
plt.scatter(grouped_df['quantity_group_center'], grouped_df['price_diff'],s=10)
plt.plot(grouped_df['quantity_group_center'], np.array(grouped_df['quantity_group_center'].values)/2e6-0.000352,color='red')
plt.xlabel('quantity_group_center')
plt.ylabel('average price_diff')
plt.title('Scatter plot of average price_diff by quantity_group')
plt.grid(True)
grouped_df.head(10)
quantité_groupe | prix_diff | quantité_group_center | |
---|---|---|---|
0 | 0-199 | -0.000302 | 99.5 |
1 | 100-299 | -0.000124 | 199.5 |
2 | 200-399 | -0.000068 | 299.5 |
3 | 300-499 | -0.000017 | 399.5 |
4 | 400-599 | -0.000048 | 499.5 |
5 | 500-699 | 0.000098 | 599.5 |
6 | 600-799 | 0.000006 | 699.5 |
7 | 700-899 | 0.000261 | 799.5 |
8 | 800-999 | 0.000186 | 899.5 |
9 | 900-1099 | 0.000299 | 999.5 |
Avec une modélisation grossière du volume des transactions et du volume des transactions correspondant à l'impact des prix, il semble être possible de calculer la position optimale de l'annonce.
Commencez par écrire un simple rendement attendu, c'est-à-dire la probabilité d'un paiement cumulé supérieur à Q en 1s, multiplié par le rendement attendu (c'est-à-dire le prix du choc):
Selon l'image, le rendement attendu est maximal autour de 2500 et est environ 2,5 fois le volume moyen des transactions. C'est-à-dire que les ordres de vente devraient être suspendus à la position 2500. Il est nécessaire de souligner à nouveau que le volume des transactions dans l'axe horizontal représente 1s, ne peut pas être simplement égal à la position de profondeur.
Nous avons découvert que la distribution des transactions à différents intervalles de temps est une simple mise à l'échelle de la distribution des transactions individuelles. Nous avons également fait un modèle de rendement attendu simple basé sur les chocs de prix et la probabilité de transaction. Le résultat de ce modèle est conforme à nos attentes.
#1s内的累计分布
df_resampled = buy_trades['quantity'].resample('1S').sum()
df_resampled = df_resampled.to_frame(name='quantity')
df_resampled = df_resampled[df_resampled['quantity']>0]
depths = np.array(range(0, 15000, 10))
mean = df_resampled['quantity'].mean()
alpha = np.log(np.mean(df_resampled['quantity'] > mean))/np.log(2.05)
probabilities_s = np.array([((1+20**(-depth/mean))*depth/mean+1)**(alpha) for depth in depths])
profit_s = np.array([depth/2e6-0.000352 for depth in depths])
plt.figure(figsize=(10, 5))
plt.plot(depths, probabilities_s*profit_s)
plt.xlabel('Q')
plt.ylabel('Excpet profit')
plt.grid(True)
Quantitatif de l'oc 🐂🍺