Les ressources ont été chargées... Je charge...

Stratégie de délégation de l'iceberg Python

Auteur:L'inventeur de la quantification - un petit rêve, Créé: 2020-03-06 15:26:43, Mis à jour: 2023-10-11 19:57:53

img

Stratégie de délégation de l'iceberg Python

Dans cet article, nous présentons deux stratégies classiques de portage: la commande Ice Mountain (achat / vente) ; la stratégie de portage de la plate-forme de trading quantifié par l'inventeur.https://www.fmz.com/square/s:冰山委托/1

Pour plus d'informations, veuillez consulter la politique de version de JavaScript:

Les mandats de montagne glacée désignent les investisseurs qui, lorsqu'ils effectuent des transactions à grande échelle, pour éviter de provoquer un choc excessif sur le marché, décomposent automatiquement un gros ordre en plusieurs mandats, effectuent automatiquement un petit ordre en fonction du dernier prix d'achat / vente et de la stratégie de prix définie par le client, et réengagent automatiquement un nouveau mandat lorsque le dernier ordre est entièrement transait ou lorsque le dernier prix s'écarte nettement du prix actuel du mandat.

Beaucoup de pages de négociation sont livrées avec des outils de commande de montagne d'ice, avec de nombreuses fonctionnalités, mais si vous voulez personnaliser certaines fonctionnalités ou modifier certaines fonctionnalités en fonction de vos besoins, vous avez besoin d'un outil plus flexible. Les inventeurs de la plate-forme de négociation quantitative ont bien résolu ce problème.

Python Iceberg Mandate - achat Le code et les annotations de la stratégie

import random  # 导入随机数库

def CancelPendingOrders():     # CancelPendingOrders 函数作用是取消当前交易对所有挂单。
    while True:                # 循环检测,调用GetOrders 函数,检测当前挂单,如果orders 为空数组,即len(orders) 等于0,说明订单全部取消了,可以退出函数,调用return 退出。
        orders = _C(exchange.GetOrders)
        if len(orders) == 0 :
            return 

        for j in range(len(orders)):     # 遍历当前挂单数组,调用取消订单的函数CancelOrder,逐个取消挂单。
            exchange.CancelOrder(orders[j]["Id"])
            if j < len(orders) - 1:      # 除了最后一个订单,每次都执行Sleep 让程序等待一会儿,避免撤单过于频繁。
                Sleep(Interval)

LastBuyPrice = 0       # 设置一个全局变量,记录最近一次买入的价格。
InitAccount = None     # 设置一个全局变量,记录初始账户资产信息。

def dispatch():        # 冰山委托逻辑的主要函数
    global InitAccount, LastBuyPrice     # 引用全局变量
    account = None                       # 声明一个变量,记录实时获取的账户信息,用于对比计算。
    ticker = _C(exchange.GetTicker)      # 声明一个变量,记录最近行情。
    LogStatus(_D(), "ticker:", ticker)   # 在状态栏输出时间,最新行情
    if LastBuyPrice > 0:                 # 当LastBuyPrice大于0时,即已经委托开始时,执行if条件内代码。
        if len(_C(exchange.GetOrders)) > 0:    # 调用exchange.GetOrders 函数获取当前所有挂单,判断有挂单,执行if条件内代码。
            if ticker["Last"] > LastBuyPrice  and ((ticker["Last"] - LastBuyPrice) / LastBuyPrice) > (2 * (EntrustDepth / 100)):   # 检测偏离程度,如果触发该条件,执行if内代码,撤单。
                Log("偏离过多, 最新成交价:", ticker["Last"], "委托价", LastBuyPrice)
                CancelPendingOrders()
            else :
                return True
        else :    # 如果没有挂单,证明订单完全成交了。
            account = _C(exchange.GetAccount)     # 获取当前账户资产信息。
            Log("买单完成, 累计花费:", _N(InitAccount["Balance"] - account["Balance"]), "平均买入价:", _N((InitAccount["Balance"] - account["Balance"]) / (account["Stocks"] - InitAccount["Stocks"])))  # 打印交易信息。
        LastBuyPrice = 0   # 重置 LastBuyPrice为0

    BuyPrice = _N(ticker["Buy"] * (1 - EntrustDepth / 100))   # 通过当前行情和参数,计算挂单价格。
    if BuyPrice > MaxBuyPrice:    # 判断是否超过参数设置的最大价格
        return True

    if not account:               # 如果 account 为 null ,执行if 语句内代码,重新获取当前资产信息,复制给account
        account = _C(exchange.GetAccount)

    if (InitAccount["Balance"] - account["Balance"]) >= TotalBuyNet:  # 判断买入所花费的总钱数,是不是超过参数设置。
        return False

    RandomAvgBuyOnce = (AvgBuyOnce * ((100.0 - FloatPoint) / 100.0)) + (((FloatPoint * 2) / 100.0) * AvgBuyOnce * random.random())   # 随机数 0~1
    UsedMoney = min(account["Balance"], RandomAvgBuyOnce, TotalBuyNet - (InitAccount["Balance"] - account["Balance"]))

    BuyAmount = _N(UsedMoney / BuyPrice)   # 计算买入数量
    if BuyAmount < MinStock:         # 判断买入数量是否小于 参数上最小买入量限制。
        return False 
    LastBuyPrice = BuyPrice          # 记录本次下单价格,赋值给LastBuyPrice
    exchange.Buy(BuyPrice, BuyAmount, "花费:¥", _N(UsedMoney), "上次成交价", ticker["Last"]) # 下单
    return True

def main():
    global LoopInterval, InitAccount    # 引用 LoopInterval, InitAccount 全局变量
    CancelPendingOrders()               # 开始运行时,取消所有挂单
    InitAccount = _C(exchange.GetAccount)   # 初始记录 开始时的账户资产
    Log(InitAccount)                        # 打印初始账户信息
    if InitAccount["Balance"] < TotalBuyNet:    # 如果初始时资产不足,则抛出错误,停止程序
        raise Exception("账户余额不足")
    LoopInterval = max(LoopInterval, 1)      # 设置LoopInterval至少为1
    while dispatch():                        # 主要循环,不停调用 冰山委托逻辑函数 dispatch ,当dispatch函数 return false 时才停止循环。
        Sleep(LoopInterval * 1000)           # 每次循环都暂停一下,控制轮询频率。
    Log("委托全部完成", _C(exchange.GetAccount))   # 当循环执行跳出时,打印当前账户资产信息。

Python Iceberg est commandé - en vente

Vous pouvez essayer de lire le code de "Python Iceberg Engagement - Vente", la logique stratégique est la même que celle de l'achat, avec une légère différence.

import random

def CancelPendingOrders():
    while True:
        orders = _C(exchange.GetOrders)
        if len(orders) == 0:
            return
        
        for j in range(len(orders)):
            exchange.CancelOrder(orders[j]["Id"])
            if j < len(orders) - 1:
                Sleep(Interval)

LastSellPrice = 0
InitAccount = None

def dispatch():
    global LastSellPrice, InitAccount
    account = None
    ticker = _C(exchange.GetTicker)
    LogStatus(_D(), "ticker:", ticker)   
    if LastSellPrice > 0:
        if len(_C(exchange.GetOrders)) > 0:
            if ticker["Last"] < LastSellPrice and ((LastSellPrice - ticker["Last"]) / ticker["Last"]) > (2 * (EntrustDepth / 100)):
                Log("偏离过多,最新成交价:", ticker["Last"], "委托价", LastSellPrice)
                CancelPendingOrders()
            else :
                return True
        else :
            account = _C(exchange.GetAccount)
            Log("买单完成,累计卖出:", _N(InitAccount["Stocks"] - account["Stocks"]), "平均卖出价:", _N((account["Balance"] - InitAccount["Balance"]) / (InitAccount["Stocks"] - account["Stocks"])))
            LastSellPrice = 0

    SellPrice = _N(ticker["Sell"] * (1 + EntrustDepth / 100))
    if SellPrice < MinSellPrice:
        return True

    if not account:
        account = _C(exchange.GetAccount)

    if (InitAccount["Stocks"] - account["Stocks"]) >= TotalSellStocks:
        return False 

    RandomAvgSellOnce = (AvgSellOnce * ((100.0 - FloatPoint) / 100.0)) + (((FloatPoint * 2) / 100.0) * AvgSellOnce * random.random())
    SellAmount = min(TotalSellStocks - (InitAccount["Stocks"] - account["Stocks"]), RandomAvgSellOnce)
    if SellAmount < MinStock:
        return False 

    LastSellPrice = SellPrice
    exchange.Sell(SellPrice, SellAmount, "上次成交价", ticker["Last"])
    return True

def main():
    global InitAccount, LoopInterval
    CancelPendingOrders()
    InitAccount = _C(exchange.GetAccount)
    Log(InitAccount)
    if InitAccount["Stocks"] < TotalSellStocks:
        raise Exception("账户币数不足")
    LoopInterval = max(LoopInterval, 1)
    while dispatch():
        Sleep(LoopInterval)
    Log("委托全部完成", _C(exchange.GetAccount))

La stratégie fonctionne

Nous avons testé l'application WexApp sur une plateforme d'échange simulée: acheterimg

À vendreimg

La logique de la stratégie n'est pas compliquée, la stratégie est exécutée en fonction des paramètres de la stratégie, du prix actuel, de l'ordre dynamique de l'annulation, du retrait. Lorsqu'un montant de transaction / nombre de pièces est atteint, la stratégie s'arrête à proximité du nombre de paramètres définis. Le code de la stratégie est très simple et adapté aux débutants. La stratégie est d'ordre pédagogique et pratique.


Relationnée

Plus de

M.M.C.Bonjour, j'aimerais savoir ce que cela signifie pour calculer le nombre de achats aléatoires effectués à la fois.

L'inventeur de la quantification - un petit rêveLa version JS a cette version, qui a été directement transférée.