Les ressources ont été chargées... Je charge...

La version Python de la stratégie de couverture intertemporelle Bollinger sur les contrats à terme sur matières premières (uniquement à des fins d'étude)

Auteur:La bonté, Créé: 2020-06-20 10:52:34, Mis à jour: 2025-01-14 20:40:43

Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only)

La stratégie d'arbitrage intertemporel précédemment écrite nécessite l'entrée manuelle de l'écart de couverture pour l'ouverture et la fermeture des positions.

class Hedge:
    'Hedging control class'
    def __init__(self, q, e, initAccount, symbolA, symbolB, maPeriod, atrRatio, opAmount):
        self.q = q 
        self.initAccount = initAccount
        self.status = 0
        self.symbolA = symbolA
        self.symbolB = symbolB
        self.e = e
        self.isBusy = False 
        
        self.maPeriod = maPeriod
        self.atrRatio = atrRatio
        self.opAmount = opAmount
        self.records = []
        self.preBarTime = 0
        
    def poll(self):
        if (self.isBusy or not exchange.IO("status")) or not ext.IsTrading(self.symbolA):
            Sleep(1000)
            return 

        insDetailA = exchange.SetContractType(self.symbolA)
        if not insDetailA:
            return 

        recordsA = exchange.GetRecords()
        if not recordsA:
            return 

        insDetailB = exchange.SetContractType(self.symbolB)
        if not insDetailB:
            return 

        recordsB = exchange.GetRecords()
        if not recordsB:
            return 

        # Calculate the spread price K line
        if recordsA[-1]["Time"] != recordsB[-1]["Time"]:
            return 

        minL = min(len(recordsA), len(recordsB))
        rA = recordsA.copy()
        rB = recordsB.copy()

        rA.reverse()
        rB.reverse()
        count = 0
        
        arrDiff = []
        for i in range(minL):
            arrDiff.append(rB[i]["Close"] - rA[i]["Close"])
        arrDiff.reverse()
        if len(arrDiff) < self.maPeriod:
            return 

        # Calculate Bollinger Bands indicator
        boll = TA.BOLL(arrDiff, self.maPeriod, self.atrRatio)

        ext.PlotLine("upper trail", boll[0][-2], recordsA[-2]["Time"])
        ext.PlotLine("middle trail", boll[1][-2], recordsA[-2]["Time"])
        ext.PlotLine("lower trail", boll[2][-2], recordsA[-2]["Time"])
        ext.PlotLine("Closing price spread", arrDiff[-2], recordsA[-2]["Time"])

        LogStatus(_D(), "upper trail:", boll[0][-1], "\n", "middle trail:", boll[1][-1], "\n", "lower trail:", boll[2][-1], "\n", "Current closing price spread:", arrDiff[-1])
        
        action = 0
        # Signal trigger
        if self.status == 0:
            if arrDiff[-1] > boll[0][-1]:
                Log("Open position A buy B sell", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
                action = 2
                # Add chart markers
                ext.PlotFlag(recordsA[-1]["Time"], "A buy B sell", "Positive")
            elif arrDiff[-1] < boll[2][-1]:
                Log("Open position A sell B buy", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
                action = 1
                # Add chart markers
                ext.PlotFlag(recordsA[-1]["Time"], "A sell B buy", "Negative")
        elif self.status == 1 and arrDiff[-1] > boll[1][-1]:
            Log("Close position A buy B sell", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
            action = 2
            # Add chart markers
            ext.PlotFlag(recordsA[-1]["Time"], "A buy B sell", "Close Negative")
        elif self.status == 2 and arrDiff[-1] < boll[1][-1]:
            Log("Close position A sell B buy", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
            action = 1 
            # Add chart markers
            ext.PlotFlag(recordsA[-1]["Time"], "A sell B buy", "Close Positive")


        # Execute specific instructions
        if action == 0:
            return 
        
        self.isBusy = True
        tasks = []
        if action == 1:
            tasks.append([self.symbolA, "sell" if self.status == 0 else "closebuy"])
            tasks.append([self.symbolB, "buy" if self.status == 0 else "closesell"])
        elif action == 2:
            tasks.append([self.symbolA, "buy" if self.status == 0 else "closesell"])
            tasks.append([self.symbolB, "sell" if self.status == 0 else "closebuy"])

        def callBack(task, ret):
            def callBack(task, ret):
                self.isBusy = False
                if task["action"] == "sell":
                    self.status = 2
                elif task["action"] == "buy":
                    self.status = 1
                else:
                    self.status = 0
                    account = _C(exchange.GetAccount)
                    LogProfit(account["Balance"] - self.initAccount["Balance"], account)
            self.q.pushTask(self.e, tasks[1][0], tasks[1][1], self.opAmount, callBack)

        self.q.pushTask(self.e, tasks[0][0], tasks[0][1], self.opAmount, callBack)



def main():
    SetErrorFilter("ready|login|timeout")
    Log("Connecting to the trading server...")
    while not exchange.IO("status"):
        Sleep(1000)

    Log("Successfully connected to the trading server")
    initAccount = _C(exchange.GetAccount)
    Log(initAccount)

    def callBack(task, ret):
        Log(task["desc"], "success" if ret else "failure")

    q = ext.NewTaskQueue(callBack)
    p = ext.NewPositionManager()
    if CoverAll:
        Log("Start closing all remaining positions...")
        p.CoverAll()
        Log("Operation complete")

    t = Hedge(q, exchange, initAccount, SA, SB, MAPeriod, ATRRatio, OpAmount)
    while True:
        q.poll()
        t.poll()

Réglage des paramètres de stratégie:

Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only)

Le cadre global de la stratégie est essentiellement le même que celui de la stratégie deVersion Python de la stratégie de couverture intertemporelle des contrats à terme sur matières premièresLorsque la stratégie est en cours d'exécution, les données de la ligne K des deux contrats sont obtenues, puis la différence de prix est calculée pour calculer l'écart.TA.BOLLLorsque l'écart dépasse le rail supérieur de la bande de Bollinger, il sera couvert, et lorsqu'il touche le rail inférieur, il sera opposé à l'opération.

Test de retour:

Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only) Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only) Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only)

Cet article est principalement destiné à des fins d'étude. Stratégie complète:https://www.fmz.com/strategy/213826


Contenu lié

En savoir plus