Les ressources ont été chargées... Je charge...

Stratégie de négociation bidirectionnelle de réversion de moyenne mobile

Auteur:ChaoZhang est là., Date: 2024-01-15 12:15:14 Je vous en prie.
Les étiquettes:

img

Résumé

La stratégie de négociation bidirectionnelle de réversion des moyennes mobiles est une stratégie de négociation quantitative basée sur la théorie de la réversion de la moyenne des prix. Cette stratégie capte les opportunités d'inversion des prix en établissant plusieurs moyennes mobiles et en entrant sur le marché lorsque le prix dévie de manière significative des moyennes mobiles, et en sortant lorsqu'il revient.

La logique de la stratégie

L'idée de base de cette stratégie est la réversion de la moyenne des prix, ce qui suggère que les prix ont tendance à fluctuer autour d'une valeur moyenne, et ont une plus grande chance de revenir en arrière lorsqu'ils s'écartent trop de la moyenne. Plus précisément, cette stratégie établit trois groupes de moyennes mobiles: moyennes mobiles d'entrée, moyennes mobiles de sortie et moyennes mobiles de stop-loss. Elle ouvrira des positions longues ou courtes correspondantes lorsque les prix atteignent les moyennes mobiles d'entrée; fermez des positions lorsque les prix atteignent les moyennes mobiles de sortie; et contrôlez les pertes avec des moyennes mobiles de stop-loss au cas où les prix continueraient de tendance sans revenir en arrière.

La moyenne mobile de sortie est une moyenne mobile séparée qui indique quand fermer les positions. Lorsque les prix atteignent cette ligne, les positions existantes seront aplatis.

Analyse des avantages

Les principaux avantages de la stratégie de réversion de la moyenne mobile bidirectionnelle sont les suivants:

  1. Capturer les renversements de prix, adaptés aux marchés à plage
  2. Contrôle des risques par le biais de stop-loss
  3. Paramètres hautement personnalisables pour l'adaptabilité
  4. Facile à comprendre, pratique pour l'optimisation des paramètres

Cette stratégie fonctionne bien avec les instruments à faible volatilité qui ont des fluctuations de prix relativement faibles, en particulier lorsqu'ils entrent dans des cycles à fourchette. Elle peut effectivement saisir les opportunités d'inversions de prix temporaires. Pendant ce temps, les mesures de contrôle des risques sont assez complètes, plafonnant les pertes dans des fourchettes raisonnables même si les prix ne reviennent pas.

Analyse des risques

Il existe également certains risques associés à cette stratégie:

  1. La poursuite des tendances est un risque. Les nouvelles positions consécutives peuvent conduire à la liquidation lors de fortes tendances.
  2. Risque de fluctuations excessives des prix. Les pertes d'arrêt pourraient être affectées par une volatilité accrue.
  3. Risque d'optimisation des paramètres: des paramètres mal réglés peuvent entraîner une sous-performance significative.

Certaines façons d' atténuer les risques ci-dessus comprennent:

  1. Limiter les nouvelles entrées afin d'éviter une survente
  2. Réduction de la taille des positions pour limiter les risques de liquidation
  3. Optimisation des paramètres tels que les périodes moyennes mobiles et les multiplicateurs de ligne de sortie

Directions d'optimisation

Il y a aussi beaucoup de marge de manœuvre pour optimiser cette stratégie:

  1. Ajouter une logique d'entrée supplémentaire pour éviter la poursuite de tendance
  2. Incorporer un dimensionnement adaptatif des positions par rapport à la volatilité
  3. Expérience avec différents types de moyennes mobiles
  4. Apprentissage automatique pour l'optimisation automatisée des paramètres
  5. Incorporer des arrêts de suivi pour une gestion plus dynamique des risques

Conclusion

La stratégie bidirectionnelle de trading de réversion de moyenne mobile vise à tirer profit des renversements de prix après des écarts significatifs par rapport à ses niveaux de moyenne mobile. Avec des mesures de contrôle des risques appropriées, elle peut réaliser des profits constants grâce à l'ajustement des paramètres.


/*backtest
start: 2023-12-15 00:00:00
end: 2024-01-14 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
strategy(title = "hamster-bot MRS 2", overlay = true, default_qty_type = strategy.percent_of_equity, initial_capital = 100, default_qty_value = 30, pyramiding = 1, commission_value = 0.1, backtest_fill_limits_assumption = 1)
info_options = "Options"

on_close = input(false, title = "Entry on close", inline=info_options, group=info_options)
OFFS = input.int(0, minval = 0, maxval = 1, title = "| Offset View", inline=info_options, group=info_options)
trade_offset = input.int(0, minval = 0, maxval = 1, title = "Trade", inline=info_options, group=info_options)
use_kalman_filter = input.bool(false, title="Use Kalman filter", group=info_options)

//MA Opening
info_opening = "MA Opening Long"
maopeningtyp_l = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening, group=info_opening)
maopeningsrc_l = input.source(ohlc4, title = "", inline=info_opening, group=info_opening)
maopeninglen_l = input.int(3, minval = 1, title = "", inline=info_opening, group=info_opening)
long1on    = input(true, title = "", inline = "long1")
long1shift = input.float(0.96, step = 0.005, title = "Long", inline = "long1")
long1lot   = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "long1")

info_opening_s = "MA Opening Short"
maopeningtyp_s = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening_s, group=info_opening_s)
maopeningsrc_s = input.source(ohlc4, title = "", inline=info_opening_s, group=info_opening_s)
maopeninglen_s = input.int(3, minval = 1, title = "", inline=info_opening_s, group=info_opening_s)
short1on    = input(true, title = "", inline = "short1")
short1shift = input.float(1.04, step = 0.005, title = "short", inline = "short1")
short1lot   = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "short1")


//MA Closing
info_closing = "MA Closing"
maclosingtyp = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_closing, group=info_closing)
maclosingsrc = input.source(ohlc4, title = "", inline=info_closing, group=info_closing)
maclosinglen = input.int(3, minval = 1, maxval = 200, title = "", inline=info_closing, group=info_closing)
maclosingmul = input.float(1, step = 0.005, title = "mul", inline=info_closing, group=info_closing)

startTime = input(timestamp("01 Jan 2010 00:00 +0000"), "Start date", inline = "period")
finalTime = input(timestamp("31 Dec 2030 23:59 +0000"), "Final date", inline = "period")

HMA(_src, _length) =>  ta.wma(2 * ta.wma(_src, _length / 2) - ta.wma(_src, _length), math.round(math.sqrt(_length)))
EHMA(_src, _length) =>  ta.ema(2 * ta.ema(_src, _length / 2) - ta.ema(_src, _length), math.round(math.sqrt(_length)))
THMA(_src, _length) =>  ta.wma(ta.wma(_src,_length / 3) * 3 - ta.wma(_src, _length / 2) - ta.wma(_src, _length), _length)
tema(sec, length)=>
    tema1= ta.ema(sec, length)
    tema2= ta.ema(tema1, length)
    tema3= ta.ema(tema2, length)
    tema_r = 3*tema1-3*tema2+tema3
donchian(len) => math.avg(ta.lowest(len), ta.highest(len))
ATR_func(_src, _len)=>
    atrLow = low - ta.atr(_len)
    trailAtrLow = atrLow
    trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1]
    supportHit = _src <= trailAtrLow
    trailAtrLow := supportHit ? atrLow : trailAtrLow
    trailAtrLow
f_dema(src, len)=>
    EMA1 = ta.ema(src, len)
    EMA2 = ta.ema(EMA1, len)
    DEMA = (2*EMA1)-EMA2
f_zlema(src, period) =>
    lag = math.round((period - 1) / 2)
    ema_data = src + (src - src[lag])
    zl= ta.ema(ema_data, period)
f_kalman_filter(src) =>
    float value1= na
    float value2 = na
    value1 := 0.2 * (src - src[1]) + 0.8 * nz(value1[1])
    value2 := 0.1 * (ta.tr) + 0.8 * nz(value2[1])
    lambda = math.abs(value1 / value2)
    alpha = (-math.pow(lambda, 2) + math.sqrt(math.pow(lambda, 4) + 16 * math.pow(lambda, 2)))/8
    value3 = float(na)
    value3 := alpha * src + (1 - alpha) * nz(value3[1])
//SWITCH
ma_func(modeSwitch, src, len, use_k_f=true) =>
      modeSwitch == "SMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.sma(src, len))  : ta.sma(src, len) :
      modeSwitch == "RMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.rma(src, len))  : ta.rma(src, len) :
      modeSwitch == "EMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.ema(src, len))  : ta.ema(src, len) :
      modeSwitch == "TEMA"  ? use_kalman_filter and use_k_f ? f_kalman_filter(tema(src, len))    : tema(src, len):
      modeSwitch == "DEMA"  ? use_kalman_filter and use_k_f ? f_kalman_filter(f_dema(src, len))  : f_dema(src, len):
      modeSwitch == "ZLEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_zlema(src, len)) : f_zlema(src, len):
      modeSwitch == "WMA"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.wma(src, len))  : ta.wma(src, len):
      modeSwitch == "VWMA"  ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.vwma(src, len)) : ta.vwma(src, len):
      modeSwitch == "Hma"   ? use_kalman_filter and use_k_f ? f_kalman_filter(HMA(src, len))     : HMA(src, len):
      modeSwitch == "Ehma"  ? use_kalman_filter and use_k_f ? f_kalman_filter(EHMA(src, len))    : EHMA(src, len):
      modeSwitch == "Thma"  ? use_kalman_filter and use_k_f ? f_kalman_filter(THMA(src, len/2))  : THMA(src, len/2):
      modeSwitch == "ATR"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ATR_func(src, len)): ATR_func(src, len) :
      modeSwitch == "L"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.lowest(len)): ta.lowest(len) :
      modeSwitch == "H"   ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.highest(len)): ta.highest(len) :
      modeSwitch == "DMA"   ? donchian(len) : na

//Var
sum = 0.0
maopening_l = 0.0
maopening_s = 0.0
maclosing = 0.0
pos = strategy.position_size
p = 0.0
p := pos == 0 ? (strategy.equity / 100) / close : p[1]
truetime = true
loss = 0.0
maxloss = 0.0
equity = 0.0

//MA Opening
maopening_l := ma_func(maopeningtyp_l, maopeningsrc_l, maopeninglen_l)
maopening_s := ma_func(maopeningtyp_s, maopeningsrc_s, maopeninglen_s)

//MA Closing
maclosing := ma_func(maclosingtyp, maclosingsrc, maclosinglen) * maclosingmul

long1 = long1on == false ? 0 : long1shift == 0 ? 0 : long1lot == 0 ? 0 : maopening_l == 0 ? 0 : maopening_l * long1shift
short1 = short1on == false ? 0 : short1shift == 0 ? 0 : short1lot == 0 ? 0 : maopening_s == 0 ? 0 : maopening_s * short1shift
//Colors
long1col = long1 == 0 ? na : color.green
short1col = short1 == 0 ? na : color.red
//Lines
// plot(maopening_l, offset = OFFS, color = color.new(color.green, 50))
// plot(maopening_s, offset = OFFS, color = color.new(color.red, 50))
plot(maclosing, offset = OFFS, color = color.fuchsia)
long1line = long1 == 0 ? close : long1
short1line = short1 == 0 ? close : short1
plot(long1line, offset = OFFS, color = long1col)
plot(short1line, offset = OFFS, color = short1col)

//Lots
lotlong1 = p * long1lot
lotshort1 = p * short1lot

//Entry
if truetime
    //Long
    sum := 0
    strategy.entry("L", strategy.long, lotlong1, limit = on_close ? na : long1, when = long1 > 0 and pos <= sum and (on_close ? close <= long1[trade_offset] : true))
    sum := lotlong1

    //Short
    sum := 0
    pos := -1 * pos
    strategy.entry("S", strategy.short, lotshort1, limit = on_close ? na : short1, when = short1 > 0 and pos <= sum and (on_close ? close >= short1[trade_offset] : true))
    sum := lotshort1

strategy.exit("Exit", na, limit = maclosing)
if time > finalTime
    strategy.close_all()

Plus de