過去FMZは,持続可能な格子戦略を公表し,ユーザーに好評を得ており,TRXの取引は,過去1年間にわたって,リスク管理が可能な状況で,多くの利益を得ています. 1. 初期価格,格子間隔,格子値,多空間のモードなどのパラメータを設定する必要があり,設定は繁忙で,収益に影響は大きく,新規者は設定するのが難しい. 2. 永続的な格子戦略では,空爆リスクは高く,多重リスクは比較的低く,格子価値設定が小さい場合でも,空爆価格の影響は大きくありません. 3. 永続契約格子には,空きのリスクを避けるために,ただし,空きを保持する問題を引き起こし,現在の価格が初期価格よりも高くなる場合,初期価格をリセットする必要があります.
格子戦略の原理と比較については,以前書いたものですが,現在でも参考になります.https://www.fmz.com/digest-topic/5930・平衡戦略は,常に固定価値比率または価値のポジションを保持し,上昇すると売る,低下すると買う,簡単な設定で動作する. ・コイン価格が多く上昇しても,空走のリスクはありません. ・現金平衡戦略の問題は,資金利用率が低く,レバレッジを高める簡単な方法はありません. ・永続契約は,問題を解決できます. ・総資本が1000で,元の資本を超えて2000を固定して資金利用率を向上させる. ・また,パラメータは,変動の割合を調整し,多少の引き下げを制御するパラメータです. 例えば,0.01を1%の引き下げと,1回引き下げと1回引き下げとして設定します.
初心者にとって,バランス戦略を推奨し,操作が簡単で,保有比率または保有価値のパラメータを設定するだけで,頭が動かない状態で,価格が上昇する心配をすることなく動作することができます. ある程度の経験を持つ人は,格子戦略を選択し,変動する上下限と格子各資金を自分で決定し,資金利用率を向上させ,最大利益を得ることができます.
このドキュメントは,より多くのトランザクションペアのリトークを容易にするために,ユーザが異なるパラメータとトランザクションペアを自己調節して比較できるようにする完全なリトークプロセスを示します. (バージョンはPython3で,代理ダウンロードが必要で,ユーザは自分でAnancoda3をダウンロードしたり,Googleのcolabで実行することができます)
import requests
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests, zipfile, io
%matplotlib inline
## 当前交易对
Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo')
symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))-
set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT']
print(symbols)
['FLMUSDT', 'ICPUSDT', 'CHZUSDT', 'APEUSDT', 'DARUSDT', 'TLMUSDT', 'ETHUSDT', 'STMXUSDT', 'ENJUSDT', 'LINKUSDT', 'OGNUSDT', 'RSRUSDT', 'QTUMUSDT', 'UNIUSDT', 'BNBUSDT', 'XLMUSDT', 'ATOMUSDT', 'LPTUSDT', 'UNFIUSDT', 'DASHUSDT', 'BTCUSDT', 'NEOUSDT', 'AAVEUSDT', 'DUSKUSDT', 'XRPUSDT', 'IOTXUSDT', 'CVCUSDT', 'SANDUSDT', 'XTZUSDT', 'IOTAUSDT', 'BELUSDT', 'MANAUSDT', 'IOSTUSDT', 'IMXUSDT', 'THETAUSDT', 'SCUSDT', 'DOGEUSDT', 'CELOUSDT', 'BNXUSDT', 'SNXUSDT', 'ZRXUSDT', 'HBARUSDT', 'DOTUSDT', 'ANKRUSDT', 'CELRUSDT', 'BAKEUSDT', 'GALUSDT', 'ICXUSDT', 'LRCUSDT', 'AVAXUSDT', 'C98USDT', 'MTLUSDT', 'FTTUSDT', 'MASKUSDT', 'RLCUSDT', 'MATICUSDT', 'COMPUSDT', 'BLZUSDT', 'CRVUSDT', 'ZECUSDT', 'RUNEUSDT', 'LITUSDT', 'ONEUSDT', 'ADAUSDT', 'NKNUSDT', 'LTCUSDT', 'ATAUSDT', 'GALAUSDT', 'BALUSDT', 'ROSEUSDT', 'EOSUSDT', 'YFIUSDT', 'SKLUSDT', 'BANDUSDT', 'ALGOUSDT', 'NEARUSDT', 'AXSUSDT', 'KSMUSDT', 'AUDIOUSDT', 'SRMUSDT', 'HNTUSDT', 'MKRUSDT', 'KLAYUSDT', 'FLOWUSDT', 'STORJUSDT', 'BCHUSDT', 'DYDXUSDT', 'ARUSDT', 'GMTUSDT', 'CHRUSDT', 'API3USDT', 'VETUSDT', 'KAVAUSDT', 'WAVESUSDT', 'EGLDUSDT', 'SFPUSDT', 'RENUSDT', 'SUSHIUSDT', 'SOLUSDT', 'RVNUSDT', 'ONTUSDT', 'BTSUSDT', 'ZILUSDT', 'GTCUSDT', 'ZENUSDT', 'ALICEUSDT', 'ETCUSDT', 'TRXUSDT', 'TOMOUSDT', 'FILUSDT', 'ARPAUSDT', 'CTKUSDT', 'BATUSDT', 'SXPUSDT', '1INCHUSDT', 'HOTUSDT', 'WOOUSDT', 'LINAUSDT', 'REEFUSDT', 'GRTUSDT', 'RAYUSDT', 'COTIUSDT', 'XMRUSDT', 'PEOPLEUSDT', 'OCEANUSDT', 'JASMYUSDT', 'TRBUSDT', 'ANTUSDT', 'XEMUSDT', 'DGBUSDT', 'ENSUSDT', 'OMGUSDT', 'ALPHAUSDT', 'FTMUSDT', 'DENTUSDT', 'KNCUSDT', 'CTSIUSDT', 'SHIBUSDT', 'XECUSDT']
#获取任意周期K线的函数
def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'):
Klines = []
start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000
end_time = min(int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000,time.time()*1000)
intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000}
while start_time < end_time:
mid_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time)
#print(url)
res = requests.get(url)
res_list = res.json()
if type(res_list) == list and len(res_list) > 0:
start_time = res_list[-1][0]+int(period[:-1])*intervel_map[period[-1]]
Klines += res_list
if type(res_list) == list and len(res_list) == 0:
start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
if mid_time >= end_time:
break
df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float')
df.index = pd.to_datetime(df.time,unit='ms')
return df
2021年から今までのすべての取引対の閉盘価格をダウンロードすることで,市場指数の全体的な変化を観察することができます. 2021年から2022年は間違いなく牛市場であり,指数は一度14倍,ゴールドはどこでも,多くの通貨は数百倍上昇しました. しかし,2022年に入ると,半年続いた熊市場が開かれ,指数は一度80%暴落し,数十コインが90%以上引き下げられました. このような暴落は,グリッド戦略の大きなリスクを反映しています.
現在,指数は3点近くで,2021年初頭と比較して200%上昇した.市場動向を考えると,現在,比較的底辺であるべきだろう.
通貨の価格が今年初めより10倍以上上昇した最高値:
通貨の回転は,現在の回転と高値の80%以上です.
フォローしている小説 (ハーレクインコミックス) - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム - カクヨム
#下载所有交易对的收盘价
start_date = '2021-1-1'
end_date = '2022-05-30'
period = '1d'
df_all = pd.DataFrame(index=pd.date_range(start=start_date, end=end_date, freq=period),columns=symbols)
for i in range(len(symbols)):
#print(symbols[i])
symbol = symbols[i]
df_s = GetKlines(symbol=symbol,start=start_date,end=end_date,period=period,base='api',v='v3')
df_all[symbol] = df_s[~df_s.index.duplicated(keep='first')].close
#指数变化
df_norm = df_all/df_all.fillna(method='bfill').iloc[0] #归一化
df_norm.mean(axis=1).plot(figsize=(15,6),grid=True);
#比年初的最高涨幅
max_up = df_all.max()/df_all.fillna(method='bfill').iloc[0]
print(max_up.map(lambda x:round(x,3)).sort_values().to_dict())
{'JASMYUSDT': 1.0, 'ICPUSDT': 1.0, 'LINAUSDT': 1.0, 'WOOUSDT': 1.0, 'GALUSDT': 1.0, 'PEOPLEUSDT': 1.0, 'XECUSDT': 1.026, 'ENSUSDT': 1.032, 'TLMUSDT': 1.039, 'IMXUSDT': 1.099, 'FLOWUSDT': 1.155, 'ATAUSDT': 1.216, 'DARUSDT': 1.261, 'ALICEUSDT': 1.312, 'BNXUSDT': 1.522, 'API3USDT': 1.732, 'GTCUSDT': 1.833, 'KLAYUSDT': 1.891, 'BAKEUSDT': 1.892, 'DYDXUSDT': 2.062, 'SHIBUSDT': 2.281, 'BTCUSDT': 2.302, 'MASKUSDT': 2.396, 'SFPUSDT': 2.74, 'LPTUSDT': 2.75, 'APEUSDT': 2.783, 'ARUSDT': 2.928, 'CELOUSDT': 2.951, 'ZILUSDT': 2.999, 'LTCUSDT': 3.072, 'SNXUSDT': 3.266, 'XEMUSDT': 3.555, 'XMRUSDT': 3.564, 'YFIUSDT': 3.794, 'BANDUSDT': 3.812, 'RAYUSDT': 3.924, 'REEFUSDT': 4.184, 'ANTUSDT': 4.205, 'XTZUSDT': 4.339, 'CTKUSDT': 4.352, 'LITUSDT': 4.38, 'RSRUSDT': 4.407, 'LINKUSDT': 4.412, 'BCHUSDT': 4.527, 'DASHUSDT': 5.037, 'BALUSDT': 5.172, 'OCEANUSDT': 5.277, 'EOSUSDT': 5.503, 'RENUSDT': 5.538, 'XLMUSDT': 5.563, 'TOMOUSDT': 5.567, 'ZECUSDT': 5.654, 'COMPUSDT': 5.87, 'DGBUSDT': 5.948, 'ALGOUSDT': 5.981, 'ONTUSDT': 5.997, 'BELUSDT': 6.101, 'TRXUSDT': 6.116, 'ZRXUSDT': 6.135, 'GRTUSDT': 6.45, '1INCHUSDT': 6.479, 'DOTUSDT': 6.502, 'ETHUSDT': 6.596, 'KAVAUSDT': 6.687, 'ICXUSDT': 6.74, 'SUSHIUSDT': 6.848, 'AAVEUSDT': 6.931, 'BTSUSDT': 6.961, 'KNCUSDT': 6.966, 'C98USDT': 7.091, 'THETAUSDT': 7.222, 'ATOMUSDT': 7.553, 'OMGUSDT': 7.556, 'SXPUSDT': 7.681, 'UNFIUSDT': 7.696, 'XRPUSDT': 7.726, 'TRBUSDT': 8.241, 'BLZUSDT': 8.434, 'NEOUSDT': 8.491, 'FLMUSDT': 8.506, 'KSMUSDT': 8.571, 'FILUSDT': 8.591, 'IOTAUSDT': 8.616, 'BATUSDT': 8.647, 'ARPAUSDT': 9.055, 'UNIUSDT': 9.104, 'WAVESUSDT': 9.106, 'MKRUSDT': 10.294, 'CRVUSDT': 10.513, 'STORJUSDT': 10.674, 'SKLUSDT': 11.009, 'CVCUSDT': 11.026, 'SRMUSDT': 11.031, 'QTUMUSDT': 12.066, 'ALPHAUSDT': 12.103, 'ZENUSDT': 12.631, 'VETUSDT': 13.296, 'ROSEUSDT': 13.429, 'FTTUSDT': 13.705, 'IOSTUSDT': 13.786, 'COTIUSDT': 13.958, 'NEARUSDT': 14.855, 'HBARUSDT': 15.312, 'RLCUSDT': 15.432, 'SCUSDT': 15.6, 'GALAUSDT': 15.722, 'RUNEUSDT': 15.795, 'ADAUSDT': 16.94, 'MTLUSDT': 17.18, 'BNBUSDT': 17.899, 'RVNUSDT': 18.169, 'EGLDUSDT': 18.879, 'LRCUSDT': 19.499, 'ANKRUSDT': 21.398, 'ETCUSDT': 23.51, 'DUSKUSDT': 23.55, 'AUDIOUSDT': 25.306, 'OGNUSDT': 25.524, 'GMTUSDT': 28.83, 'ENJUSDT': 33.073, 'STMXUSDT': 33.18, 'IOTXUSDT': 35.866, 'AVAXUSDT': 36.946, 'CHZUSDT': 37.128, 'CELRUSDT': 37.273, 'HNTUSDT': 38.779, 'CTSIUSDT': 41.108, 'HOTUSDT': 46.466, 'CHRUSDT': 61.091, 'MANAUSDT': 62.143, 'NKNUSDT': 70.636, 'ONEUSDT': 84.132, 'DENTUSDT': 99.973, 'DOGEUSDT': 121.447, 'SOLUSDT': 140.296, 'MATICUSDT': 161.846, 'FTMUSDT': 192.507, 'SANDUSDT': 203.219, 'AXSUSDT': 270.41}
#当前最大回测
draw_down = df_all.iloc[-1]/df_all.max()
print(draw_down.map(lambda x:round(x,3)).sort_values().to_dict())
{'ICPUSDT': 0.022, 'FILUSDT': 0.043, 'BAKEUSDT': 0.046, 'TLMUSDT': 0.05, 'LITUSDT': 0.053, 'LINAUSDT': 0.054, 'JASMYUSDT': 0.056, 'ALPHAUSDT': 0.062, 'RAYUSDT': 0.062, 'GRTUSDT': 0.067, 'DENTUSDT': 0.068, 'RSRUSDT': 0.068, 'XEMUSDT': 0.068, 'UNFIUSDT': 0.072, 'DYDXUSDT': 0.074, 'SUSHIUSDT': 0.074, 'OGNUSDT': 0.074, 'COMPUSDT': 0.074, 'NKNUSDT': 0.078, 'SKLUSDT': 0.08, 'DGBUSDT': 0.081, 'RLCUSDT': 0.085, 'REEFUSDT': 0.086, 'BANDUSDT': 0.086, 'HOTUSDT': 0.092, 'SRMUSDT': 0.092, 'RENUSDT': 0.092, 'BTSUSDT': 0.093, 'THETAUSDT': 0.094, 'FLMUSDT': 0.094, 'EOSUSDT': 0.095, 'TRBUSDT': 0.095, 'SXPUSDT': 0.095, 'ATAUSDT': 0.096, 'NEOUSDT': 0.096, 'FLOWUSDT': 0.097, 'YFIUSDT': 0.101, 'BALUSDT': 0.106, 'MASKUSDT': 0.106, 'ONTUSDT': 0.108, 'CELRUSDT': 0.108, 'AUDIOUSDT': 0.108, 'SCUSDT': 0.11, 'GALAUSDT': 0.113, 'GTCUSDT': 0.117, 'CTSIUSDT': 0.117, 'STMXUSDT': 0.118, 'DARUSDT': 0.118, 'ALICEUSDT': 0.119, 'SNXUSDT': 0.124, 'FTMUSDT': 0.126, 'BCHUSDT': 0.127, 'SFPUSDT': 0.127, 'ROSEUSDT': 0.128, 'DOGEUSDT': 0.128, 'RVNUSDT': 0.129, 'OCEANUSDT': 0.129, 'VETUSDT': 0.13, 'KSMUSDT': 0.131, 'ICXUSDT': 0.131, 'UNIUSDT': 0.131, 'ONEUSDT': 0.131, '1INCHUSDT': 0.134, 'IOTAUSDT': 0.139, 'C98USDT': 0.139, 'WAVESUSDT': 0.14, 'DUSKUSDT': 0.141, 'LINKUSDT': 0.143, 'DASHUSDT': 0.143, 'OMGUSDT': 0.143, 'PEOPLEUSDT': 0.143, 'AXSUSDT': 0.15, 'ENJUSDT': 0.15, 'QTUMUSDT': 0.152, 'SHIBUSDT': 0.154, 'ZENUSDT': 0.154, 'BLZUSDT': 0.154, 'ANTUSDT': 0.155, 'XECUSDT': 0.155, 'CHZUSDT': 0.158, 'RUNEUSDT': 0.163, 'ENSUSDT': 0.165, 'LRCUSDT': 0.167, 'CHRUSDT': 0.168, 'IOTXUSDT': 0.174, 'TOMOUSDT': 0.176, 'ALGOUSDT': 0.177, 'EGLDUSDT': 0.177, 'ARUSDT': 0.178, 'LTCUSDT': 0.178, 'HNTUSDT': 0.18, 'LPTUSDT': 0.181, 'SOLUSDT': 0.183, 'ARPAUSDT': 0.184, 'BELUSDT': 0.184, 'ETCUSDT': 0.186, 'ZRXUSDT': 0.187, 'AAVEUSDT': 0.187, 'CVCUSDT': 0.188, 'STORJUSDT': 0.189, 'COTIUSDT': 0.19, 'CELOUSDT': 0.191, 'SANDUSDT': 0.191, 'ADAUSDT': 0.192, 'HBARUSDT': 0.194, 'DOTUSDT': 0.195, 'XLMUSDT': 0.195, 'AVAXUSDT': 0.206, 'ANKRUSDT': 0.207, 'MTLUSDT': 0.208, 'MANAUSDT': 0.209, 'CRVUSDT': 0.213, 'API3USDT': 0.221, 'IOSTUSDT': 0.227, 'XRPUSDT': 0.228, 'BATUSDT': 0.228, 'MKRUSDT': 0.229, 'MATICUSDT': 0.229, 'CTKUSDT': 0.233, 'ZILUSDT': 0.233, 'WOOUSDT': 0.234, 'ATOMUSDT': 0.237, 'KLAYUSDT': 0.239, 'XTZUSDT': 0.245, 'IMXUSDT': 0.278, 'NEARUSDT': 0.285, 'GALUSDT': 0.299, 'APEUSDT': 0.305, 'ZECUSDT': 0.309, 'KAVAUSDT': 0.31, 'GMTUSDT': 0.327, 'FTTUSDT': 0.366, 'KNCUSDT': 0.401, 'ETHUSDT': 0.416, 'XMRUSDT': 0.422, 'BTCUSDT': 0.47, 'BNBUSDT': 0.476, 'TRXUSDT': 0.507, 'BNXUSDT': 0.64}
まず,最も簡単なコードで次のダウンをシミュレートし,異なる保有価値のブーム価格を見てみましょう. 戦略は常に複数のポジションを保持しているため,上昇リスクはありません. 初期資本は1000で,コイン価格は1で,比例は0.01で調整されます. 結果は以下のとおりです. 明らかに,複数のブームのリスクも低くありません. 1.5倍のレバレッジで,50%の低下に抵抗できます. 現在の相対的な底辺では,リスクは承知できます.
保有価値 | 爆破した価格 |
---|---|
300 | 0.035 |
500 | 0.133 |
800 | 0.285 |
1000 | 0.362 |
1500 | 0.51 |
2000 | 0.599 |
3000 | 0.711 |
5000 | 0.81 |
10000 | 0.904 |
for Hold_value in [300,500,800,1000,1500,2000,3000,5000,10000]:
amount = Hold_value/1
hold_price = 1
margin = 1000
Pct = 0.01
i = 0
while margin > 0:
i += 1
if i>500:
break
buy_price = (1-Pct)*Hold_value/amount
buy_amount = Hold_value*Pct/buy_price
hold_price = (amount * hold_price + buy_amount * buy_price) / (buy_amount + amount)
amount += buy_amount
margin = 1000 + amount * (buy_price - hold_price)
print(Hold_value, round(buy_price,3))
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
#还是用原来的回测引擎
class Exchange:
def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000):
self.initial_balance = initial_balance #初始的资产
self.fee = fee
self.trade_symbols = trade_symbols
self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}}
for symbol in trade_symbols:
self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0}
def Trade(self, symbol, direction, price, amount):
cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
open_amount = amount - cover_amount
self.account['USDT']['realised_profit'] -= price*amount*self.fee #扣除手续费
self.account['USDT']['fee'] += price*amount*self.fee
self.account[symbol]['fee'] += price*amount*self.fee
if cover_amount > 0: #先平仓
self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount #利润
self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
self.account[symbol]['amount'] -= -direction*cover_amount
self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
if open_amount > 0:
total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
total_amount = direction*self.account[symbol]['amount']+open_amount
self.account[symbol]['hold_price'] = total_cost/total_amount
self.account[symbol]['amount'] += direction*open_amount
def Buy(self, symbol, price, amount):
self.Trade(symbol, 1, price, amount)
def Sell(self, symbol, price, amount):
self.Trade(symbol, -1, price, amount)
def Update(self, close_price): #对资产进行更新
self.account['USDT']['unrealised_profit'] = 0
for symbol in self.trade_symbols:
self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
self.account[symbol]['price'] = close_price[symbol]
self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
まず,TRXのバランス戦略のパフォーマンスを振り返ると,TRXはこのラウンドの熊市における最大引き下げは比較的小さいので,ある種の特殊性がある. データ選択2021年現在までの5minKライン,初期資金1000,調整比0.01,保有価値2000,手続費0.0002である.
TRXの初期価格は0.02676Uで,その間最高値が0.18Uに達し,現在0.08U近くで,波動が非常に激しい.
復習最終利益4524Uは,TRXの0.18時の利益に非常に近い.レバレッジは開始から2倍以下で,最終的に0.4以下まで低下し,ブレイクする可能性も低下し,その間に保有価値を増やす機会がある.しかし2000U以下の利益は常に静止している.これはバランス戦略の欠点の一つです.
symbol = 'TRXUSDT'
df_trx = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_trx.close.plot(figsize=(15,6),grid=True);
#TRX平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_trx.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_trx.itertuples():
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.low < buy_price:
e.Buy(symbol,buy_price,pct*hold_value/buy_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.high > sell_price:
e.Sell(symbol,sell_price,pct*hold_value/sell_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx.index = pd.to_datetime(res_trx.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4524.226998288555 91.0
#收益
res_trx.profit.plot(figsize=(15,6),grid=True);
#实际占用杠杆
(res_trx.value/(res_trx.profit+1000)).plot(figsize=(15,6),grid=True);
このコインは,最初6Uから60Uに上昇し,最終的に現在の8Uに再び落ちました. 最終的な利益は4,945で,持っていたコインの利益よりもはるかに多くなりました.
symbol = 'WAVESUSDT'
df_waves = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_waves.close.plot(figsize=(15,6),grid=True);
#TWAVES平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_waves.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_waves.itertuples():
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.low < buy_price:
e.Buy(symbol,buy_price,pct*hold_value/buy_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.high > sell_price:
e.Sell(symbol,sell_price,pct*hold_value/sell_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves.index = pd.to_datetime(res_waves.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4945.149323437233 178.0
df_waves.profit.plot(figsize=(15,6),grid=True);
格子戦略のパフォーマンスを回計測すると,格子間隔は0.01で,格子値は10である.WAVESとTRXの両方が10倍近く上昇した状況で,巨大な引き下げが起こっており,WAVESは5000Uを引き戻し,TRXは3000Uを超えた.
#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_waves.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_waves.itertuples():
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount'])
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
while row.low < buy_price:
e.Buy(symbol,buy_price,value/buy_price)
e.Update({symbol:row.close})
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) #买单价格,由于是挂单成交,也是最终的撮合价格=
while row.high > sell_price:
e.Sell(symbol,sell_price,value/sell_price)
e.Update({symbol:row.close})
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves_net.index = pd.to_datetime(res_waves_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 1678.0516101975015 70.0
res_waves_net.profit.plot(figsize=(15,6),grid=True);
#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_trx.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_trx.itertuples():
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount'])
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
while row.low < buy_price:
e.Buy(symbol,buy_price,value/buy_price)
e.Update({symbol:row.close})
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount'])
while row.high > sell_price:
e.Sell(symbol,sell_price,value/sell_price)
e.Update({symbol:row.close})
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx_net.index = pd.to_datetime(res_trx_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 -161.06952570521656 37.0
res_trx_net.profit.plot(figsize=(15,6),grid=True);
この回回顧分析は5minK線を使用し,中間波動は完全にシミュレートされていないため,実際の収益は少し高いはずである. 全体的に見ると,バランス戦略はリスクが比較的低く,暴風雨を恐れず,パラメータを調整する必要がないので,使用が比較的便利で,初心者向けに適しています. 格子戦略は初期価格設定に非常に敏感で,市場情勢に一定の判断が必要であり,長期的に見ると,空きをするリスクは高い. 現在,このラウンドは,ベア市場が底辺でしばらく安定しており,多くのコインは現在の高点から90%以上下がっています. この戦いは,永続的なバランス戦略を無料で利用できるように,皆さんに歓迎します.
77924998戦略を使うことは,硬貨を保持するよりも優れているのでしょうか?
夢は8桁の数字で軍団の戦いに加わって,この戦術をどのように使うのか?
18539809925軍勢の戦術はどこにあるのか?
ジョニードルが縮小している状況下では,仮想通貨市場はしばらく熊市状態になり,この半年でTRXやETHのような格子利回りが上昇するのでしょうか?
ジャックマこの文の欠点は,資金の計算方法がないことであり,長期保有の場合,資金の影響は大きい.牛は資金が通常正である,つまり,複数の株を保有すると多くの支払いをします.熊市とは逆です.
ジャックマ野蛮な
デワング各戦略は特定のシナリオで有効である.バランス戦略は逆のトレンド戦略であり,コインを保持することは,資本としてレバレッジを補充せず,レバレッジを補充せず,レバレッジを補充しない順調トレンド戦略に等しい.