この戦略は戦略に従って移動平均クロスオーバー傾向市場のターニングポイントを決定し,トレンドを追跡するために,複数の移動平均の黄金十字と死亡十字を使用します.
異なるパラメータを持つ複数の移動平均値を計算します.例えば,MA ((5),MA ((10) など.
短期間のMAが長期間のMAを超えると,購入信号が生成されます.
短い期間のMAが長い期間のMAを下回ると,売り信号が生成されます.
クロスオーバー機能は,クロスオーバーを判断します.MA期間を柔軟に設定できます.
MA ((8), MA ((13), MA ((21) など,複数のMAを設定する.
MA (8) がMA (13) を越えると,長引きます.
MAがMAより下にあるとき,短くします.
EMAやSMAのような MA型が使用できます
他のフィルターを追加して 偽のブレイクを避ける
トレンドフォローは反トレンド取引を避ける.
柔軟なMA期間が異なるサイクルに適しています
追加の指標が信号をフィルターすることができます
引き上げが小さく リスクは減ります
長期的な下落傾向による長期損失のリスク
悪いMAパラメータで取引が失敗する可能性があります
引き上げを制限するために 適時停止が必要
料金は利益にも影響します
MAクロスオーバートレンドフォロー戦略は,利益のトレンドに従っている.パラメータ最適化は短期および長期間の効果を提供します.追加の技術分析はパフォーマンスを向上させます.リスク制御のために厳格なストップは必須です.ライブ取引時も取引コストを考慮する必要があります.
/*backtest start: 2023-09-07 00:00:00 end: 2023-09-08 09:00:00 period: 10m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=3 //Converted to strategy by shawnteoh strategy(title = "MA Emperor insiliconot Strategy" , overlay=true, pyramiding=1, precision=8) strat_dir_input = input(title="Strategy Direction", defval="long", options=["long", "short", "all"]) strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all strategy.risk.allow_entry_in(strat_dir_value) // Testing start dates testStartYear = input(2020, "Backtest Start Year") testStartMonth = input(1, "Backtest Start Month") testStartDay = input(1, "Backtest Start Day") testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) //Stop date if you want to use a specific range of dates testStopYear = input(2030, "Backtest Stop Year") testStopMonth = input(12, "Backtest Stop Month") testStopDay = input(30, "Backtest Stop Day") testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) // Order size orderQty = input(1, "Order quantity", type = float) // Plot indicator plotInd = input(false, "Plot indicators?", type = bool) testPeriod() => true haClose = close haOpen = open haHigh = high haLow = low haClose := (open + high + low + close) / 4 haOpen := (nz(haOpen[1]) + nz(haClose[1])) / 2 haHigh := max(high, max(haOpen, haClose)) haLow := min(low , min(haOpen, haClose)) ssrc = close ha = false o = ha ? haOpen : open c = ha ? haClose : close h = ha ? haHigh : high l = ha ? haLow : low ssrc := ssrc == close ? ha ? haClose : c : ssrc ssrc := ssrc == open ? ha ? haOpen : o : ssrc ssrc := ssrc == high ? ha ? haHigh : h : ssrc ssrc := ssrc == low ? ha ? haLow : l : ssrc ssrc := ssrc == hl2 ? ha ? (haHigh + haLow) / 2 : hl2 : ssrc ssrc := ssrc == hlc3 ? ha ? (haHigh + haLow + haClose) / 3 : hlc3 : ssrc ssrc := ssrc == ohlc4 ? ha ? (haHigh + haLow + haClose+ haOpen) / 4 : ohlc4 : ssrc type = input(defval = "EMA", title = "Type", options = ["Butterworth_2Pole", "DEMA", "EMA", "Gaussian", "Geometric_Mean", "LowPass", "McGuinley", "SMA", "Sine_WMA", "Smoothed_MA", "Super_Smoother", "Triangular_MA", "Wilders", "Zero_Lag"]) len1=input(8, title ="MA 1") len2=input(13, title = "MA 2") len3=input(21, title = "MA 3") len4=input(55, title = "MA 4") len5=input(89, title = "MA 5") lenrib=input(120, title = "IB") lenrib2=input(121, title = "2B") lenrib3=input(200, title = "21b") lenrib4=input(221, title = "22b") onOff1 = input(defval=true, title="Enable 1") onOff2 = input(defval=true, title="Enable 2") onOff3 = input(defval=true, title="Enable 3") onOff4 = input(defval=false, title="Enable 4") onOff5 = input(defval=false, title="Enable 5") onOff6 = input(defval=false, title="Enable 6") onOff7 = input(defval=false, title="Enable 7") onOff8 = input(defval=false, title="Enable x") onOff9 = input(defval=false, title="Enable x") gauss_poles = input(3, "*** Gaussian poles ***", minval = 1, maxval = 14) linew = 2 shapes = false variant_supersmoother(src,len) => Pi = 2 * asin(1) a1 = exp(-1.414* Pi / len) b1 = 2*a1*cos(1.414* Pi / len) c2 = b1 c3 = (-a1)*a1 c1 = 1 - c2 - c3 v9 = 0.0 v9 := c1*(src + nz(src[1])) / 2 + c2*nz(v9[1]) + c3*nz(v9[2]) v9 variant_smoothed(src,len) => v5 = 0.0 v5 := na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len v5 variant_zerolagema(src, len) => price = src l = (len - 1) / 2 d = (price + (price - price[l])) z = ema(d, len) z variant_doubleema(src,len) => v2 = ema(src, len) v6 = 2 * v2 - ema(v2, len) v6 variant_WiMA(src, length) => MA_s= nz(src) MA_s:=(src + nz(MA_s[1] * (length-1)))/length MA_s fact(num)=> a = 1 nn = num <= 1 ? 1 : num for i = 1 to nn a := a * i a getPoles(f, Poles, alfa)=> filt = f sign = 1 results = 0 + n//tv series spoofing for r = 1 to max(min(Poles, n),1) mult = fact(Poles) / (fact(Poles - r) * fact(r)) matPo = pow(1 - alfa, r) prev = nz(filt[r-1],0) sum = sign * mult * matPo * prev results := results + sum sign := sign * -1 results := results - n results variant_gauss(Price, Lag, Poles)=> Pi = 2 * asin(1) beta = (1 - cos(2 * Pi / Lag)) / ( pow (sqrt(2), 2.0 / Poles) - 1) alfa = -beta + sqrt(beta * beta + 2 * beta) pre = nz(Price, 0) * pow(alfa, Poles) filter = pre result = n > 0 ? getPoles(nz(filter[1]), Poles, alfa) : 0 filter := pre + result variant_mg(src, len)=> mg = 0.0 mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4)) mg variant_sinewma(src, length) => PI = 2 * asin(1) sum = 0.0 weightSum = 0.0 for i = 0 to length - 1 weight = sin(i * PI / (length + 1)) sum := sum + nz(src[i]) * weight weightSum := weightSum + weight sinewma = sum / weightSum sinewma variant_geoMean(price, per)=> gmean = pow(price, 1.0/per) gx = for i = 1 to per-1 gmean := gmean * pow(price[i], 1.0/per) gmean ggx = n > per? gx : price ggx variant_butt2pole(pr, p1)=> Pi = 2 * asin(1) DTR = Pi / 180 a1 = exp(-sqrt(2) * Pi / p1) b1 = 2 * a1 * cos(DTR * (sqrt(2) * 180 / p1)) cf1 = (1 - b1 + a1 * a1) / 4 cf2 = b1 cf3 = -a1 * a1 butt_filt = pr butt_filt := cf1 * (pr + 2 * nz(pr[1]) + nz(pr[2])) + cf2 * nz(butt_filt[1]) + cf3 * nz(butt_filt[2]) variant_lowPass(src, len)=> LP = src sr = src a = 2.0 / (1.0 + len) LP := (a - 0.25 * a * a) * sr + 0.5 * a * a * nz(sr[1]) - (a - 0.75 * a * a) * nz(sr[2]) + 2.0 * (1.0 - a) * nz(LP[1]) - (1.0 - a) * (1.0 - a) * nz(LP[2]) LP variant_sma(src, len) => sum = 0.0 for i = 0 to len - 1 sum := sum + src[i] / len sum variant_trima(src, length) => len = ceil((length + 1) * 0.5) trima = sum(sma(src, len), len)/len trima variant(type, src, len) => type=="EMA" ? ema(src, len) : type=="LowPass" ? variant_lowPass(src, len) : type=="Linreg" ? linreg(src, len, 0) : type=="Gaussian" ? variant_gauss(src, len, gauss_poles) : type=="Sine_WMA" ? variant_sinewma(src, len) : type=="Geometric_Mean" ? variant_geoMean(src, len) : type=="Butterworth_2Pole" ? variant_butt2pole(src, len) : type=="Smoothed_MA" ? variant_smoothed(src, len) : type=="Triangular_MA" ? variant_trima(src, len) : type=="McGuinley" ? variant_mg(src, len) : type=="DEMA" ? variant_doubleema(src, len): type=="Super_Smoother" ? variant_supersmoother(src, len) : type=="Zero_Lag" ? variant_zerolagema(src, len) : type=="Wilders"? variant_WiMA(src, len) : variant_sma(src, len) c1=#44E2D6 c2=#DDD10D c3=#0AA368 c4=#E0670E c5=#AB40B2 cRed = #F93A00 ma1 = variant(type, ssrc, len1) ma2 = variant(type, ssrc, len2) ma3 = variant(type, ssrc, len3) ma4 = variant(type, ssrc, len4) ma5 = variant(type, ssrc, len5) ma6 = variant(type, ssrc, lenrib) ma7 = variant(type, ssrc, lenrib2) ma8 = variant(type, ssrc, lenrib3) ma9 = variant(type, ssrc, lenrib4) col1 = c1 col2 = c2 col3 = c3 col4 = c4 col5 = c5 p1 = plot(onOff1 ? ma1 : na, title = "MA 1", color = col1, linewidth = linew, style = linebr) p2 = plot(onOff2 ? ma2 : na, title = "MA 2", color = col2, linewidth = linew, style = linebr) p3 = plot(onOff3 ? ma3 : na, title = "MA 3", color = col3, linewidth = linew, style = linebr) p4 = plot(onOff4 ? ma4 : na, title = "MA 4", color = col4, linewidth = linew, style = linebr) p5 = plot(onOff5 ? ma5 : na, title = "MA 5", color = col5, linewidth = linew, style = linebr) p6 = plot(onOff6 ? ma6 : na, title = "MA 6", color = col5, linewidth = linew, style = linebr) p7 = plot(onOff7 ? ma7 : na, title = "MA 7", color = col5, linewidth = linew, style = linebr) p8 = plot(onOff8 ? ma8 : na, title = "MA 8", color = col5, linewidth = linew, style = linebr) p9 = plot(onOff9 ? ma9 : na, title = "MA 9", color = col5, linewidth = linew, style = linebr) longCond = crossover(ma2, ma3) if longCond and testPeriod() strategy.entry("buy", strategy.long, qty = orderQty, when = open > ma2[1]) shortCond = crossunder(ma2, ma3) if shortCond and testPeriod() strategy.entry("sell", strategy.short, qty = orderQty, when = open < ma2[1]) plotshape(series=plotInd? longCond : na, title="P", style=shape.triangleup, location=location.belowbar, color=green, text="P", size=size.small) plotshape(series=plotInd? shortCond : na, title="N", style=shape.triangledown, location=location.abovebar, color=red, text="N", size=size.small)