資源の読み込みに... 荷物...

ポリノミアルインターポレーションに基づくRSIモメント戦略

作者: リン・ハーンチャオチャン,日付: 2024-01-12 13:46:53
タグ:

img

概要

この戦略は,多項式インターポレーションに基づくRSIモメント指標Delta-RSIを使用して取引信号を生成する.Delta-RSIは,ローカル多項式回帰によってRSIをスムーズ化し,その第一順次時間派生値をモメント指標として得ることができる.この戦略には,ATR,ボリューム,RSIをベースとした追加のフィルターが組み込まれ,いくつかのfalse信号をフィルタリングする.

原則

この戦略の核心指標はデルタ-RSIです. その計算段階は以下の通りです.

  1. RSI の時間列を長さ rsi_l と入力します.
  2. 長さウィンドウのスライディングウィンドウ内の多項式インターポレーションを使用してRSIをフィットする
  3. 現在の点におけるフィット曲線の第1順次派生式をDelta-RSIとして計算する.
  4. デルタ・RSIが0を超えると買い信号が生まれ 0を下回ると売り信号が生まれ
  5. デルタ-RSI信号ラインを使用しても取引信号を生成することができます.

戦略は,ATR,ボリューム,RSIフィルターを使用してシグナルをフィルターします.

  1. ATRフィルター:現在のN期間のATRがM期間のATRよりも高い場合,変動が上昇することを示します.
  2. 容量フィルター: M 期間の平均容量の N 倍以上の電流容量
  3. RSIフィルター:RSIは,値1と値2の間の過買い/過売り領域をフィルターする.

利点

この戦略の利点は以下の通りです.

  1. デルタ-RSIは傾向逆転の早期検出に敏感です
  2. フィルタ は,ほとんどの 偽信号 を 排除 し,信号 の 質 を 向上 させ ます
  3. 調整可能な多項式とフィルターパラメータは,異なる市場に適しています
  4. 異なるバイアスに対応できる長/短の区切り
  5. ストップ損失/利益取得のコントロール 取引損失/利益ごとに

リスク

この戦略のリスクは以下のとおりです.

  1. パラメータの調節が不十分で,過度に滑らかしたり過濾したりする可能性があります.
  2. 長期・短期ポジション損失
  3. 過剰に広いストップは,取引損失ごとに増加する可能性があります.

これらの制御は,パラメータ最適化,フィルター調整,より緊密なストップによって行われます.

増進 の 機会

この戦略は次の方法でさらに改善できます.

  1. デルタ-RSI モデルのパラメータの最適化
  2. 機械学習に基づく適応フィルタリングを組み込む
  3. 異なる製品の調整パラメータ
  4. 信頼性を高めるためにモデル組み合わせ方法などを追加する

結論

この戦略は,デルタ-RSIの高い感度と厳格なフィルタリングメカニズムを利用することで,リスクを制御しながら質を向上させることができます.さらなるパラメータとモデル最適化は,ポジティブな利益率を拡大することができます.これは効果的な定量的な取引戦略です.


/*backtest
start: 2024-01-04 00:00:00
end: 2024-01-11 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © tbiktag
//
// Delta-RSI Oscillator Strategy With Filters
//
// This is a version of the Delta-RSI Oscillator Strategy compatible with 
// the Strategy Tester.
//
// This version also allows filtering the trade signals generated by Delts-RSI
// by means of volatility (defined by ATR), relative volume and RSI(14).
//
// Delta-RSI (© tbiktag) is a smoothed time derivative of the RSI designed
// as a momentum indicator. For the original publication, see link below:
// https://www.tradingview.com/script/OXQVFTQD-Delta-RSI-Oscillator/
// 
// D-RSI model parameters:
// RSI Length: The timeframe of the RSI that serves as an input to D-RSI.
// Frame Length: The length of the lookback frame used for local regression.
// Polynomial Order: The order of the local polynomial function used to interpolate 
// the RSI.
// Trade signals are generated based on three optional conditions:
// - Zero-crossing: bullish when D-RSI crosses zero from negative to positive 
// values (bearish otherwise)
// - Signal Line Crossing: bullish when D-RSI crosses from below to above the signal 
// line (bearish otherwise)
// - Direction Change: bullish when D-RSI was negative and starts ascending 
// (bearish otherwise)
// 
//@version=4
strategy(title="Delta-RSI Strategy with Filters", shorttitle = "D-RSI with filters", overlay = true)

// ---Subroutines---
matrix_get(_A,_i,_j,_nrows) =>
    // Get the value of the element of an implied 2d matrix
    //input: 
    // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _i :: integer: row number
    // _j :: integer: column number
    // _nrows :: integer: number of rows in the implied 2d matrix
    array.get(_A,_i+_nrows*_j)

matrix_set(_A,_value,_i,_j,_nrows) =>
    // Set a value to the element of an implied 2d matrix
    //input: 
    // _A :: array, changed on output: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _value :: float: the new value to be set
    // _i :: integer: row number
    // _j :: integer: column number
    // _nrows :: integer: number of rows in the implied 2d matrix
    array.set(_A,_i+_nrows*_j,_value)

transpose(_A,_nrows,_ncolumns) =>
    // Transpose an implied 2d matrix
    // input:
    // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _nrows :: integer: number of rows in _A
    // _ncolumns :: integer: number of columns in _A
    // output:
    // _AT :: array: pseudo 2d matrix with implied dimensions: _ncolums x _nrows
    var _AT = array.new_float(_nrows*_ncolumns,0)
    for i = 0 to _nrows-1
        for j = 0 to _ncolumns-1
            matrix_set(_AT, matrix_get(_A,i,j,_nrows),j,i,_ncolumns)
    _AT

multiply(_A,_B,_nrowsA,_ncolumnsA,_ncolumnsB) => 
    // Calculate scalar product of two matrices
    // input: 
    // _A :: array: pseudo 2d matrix
    // _B :: array: pseudo 2d matrix
    // _nrowsA :: integer: number of rows in _A
    // _ncolumnsA :: integer: number of columns in _A
    // _ncolumnsB :: integer: number of columns in _B
    // output:
    // _C:: array: pseudo 2d matrix with implied dimensions _nrowsA x _ncolumnsB
    var _C = array.new_float(_nrowsA*_ncolumnsB,0)
    int _nrowsB = _ncolumnsA
    float elementC= 0.0
    for i = 0 to _nrowsA-1
        for j = 0 to _ncolumnsB-1
            elementC := 0
            for k = 0 to _ncolumnsA-1
                elementC := elementC + matrix_get(_A,i,k,_nrowsA)*matrix_get(_B,k,j,_nrowsB)
            matrix_set(_C,elementC,i,j,_nrowsA)
    _C

vnorm(_X,_n) =>
    //Square norm of vector _X with size _n
    float _norm = 0.0
    for i = 0 to _n-1
        _norm := _norm + pow(array.get(_X,i),2)
    sqrt(_norm)

qr_diag(_A,_nrows,_ncolumns) => 
    //QR Decomposition with Modified Gram-Schmidt Algorithm (Column-Oriented)
    // input:
    // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]]
    // _nrows :: integer: number of rows in _A
    // _ncolumns :: integer: number of columns in _A
    // output:
    // _Q: unitary matrix, implied dimenstions _nrows x _ncolumns
    // _R: upper triangular matrix, implied dimansions _ncolumns x _ncolumns
    var _Q = array.new_float(_nrows*_ncolumns,0)
    var _R = array.new_float(_ncolumns*_ncolumns,0)
    var _a = array.new_float(_nrows,0)
    var _q = array.new_float(_nrows,0)
    float _r = 0.0
    float _aux = 0.0
    //get first column of _A and its norm:
    for i = 0 to _nrows-1
        array.set(_a,i,matrix_get(_A,i,0,_nrows))
    _r := vnorm(_a,_nrows)
    //assign first diagonal element of R and first column of Q
    matrix_set(_R,_r,0,0,_ncolumns)
    for i = 0 to _nrows-1
        matrix_set(_Q,array.get(_a,i)/_r,i,0,_nrows)
    if _ncolumns != 1
        //repeat for the rest of the columns
        for k = 1 to _ncolumns-1
            for i = 0 to _nrows-1
                array.set(_a,i,matrix_get(_A,i,k,_nrows))
            for j = 0 to k-1
                //get R_jk as scalar product of Q_j column and A_k column:
                _r := 0
                for i = 0 to _nrows-1
                    _r := _r + matrix_get(_Q,i,j,_nrows)*array.get(_a,i)
                matrix_set(_R,_r,j,k,_ncolumns)
                //update vector _a
                for i = 0 to _nrows-1
                    _aux := array.get(_a,i) - _r*matrix_get(_Q,i,j,_nrows)
                    array.set(_a,i,_aux)
            //get diagonal R_kk and Q_k column
            _r := vnorm(_a,_nrows)
            matrix_set(_R,_r,k,k,_ncolumns)
            for i = 0 to _nrows-1
                matrix_set(_Q,array.get(_a,i)/_r,i,k,_nrows)
    [_Q,_R]
    
pinv(_A,_nrows,_ncolumns) =>
    //Pseudoinverse of matrix _A calculated using QR decomposition
    // Input: 
    // _A:: array: implied as a (_nrows x _ncolumns) matrix 
    //.             _A = [[column_0],[column_1],...,[column_(_ncolumns-1)]]
    // Output: 
    // _Ainv:: array implied as a (_ncolumns x _nrows) matrix 
    //              _A = [[row_0],[row_1],...,[row_(_nrows-1)]]
    // ----
    // First find the QR factorization of A: A = QR,
    // where R is upper triangular matrix.
    // Then _Ainv = R^-1*Q^T.
    // ----
    [_Q,_R] = qr_diag(_A,_nrows,_ncolumns)
    _QT = transpose(_Q,_nrows,_ncolumns)
    // Calculate Rinv:
    var _Rinv = array.new_float(_ncolumns*_ncolumns,0)
    float _r = 0.0
    matrix_set(_Rinv,1/matrix_get(_R,0,0,_ncolumns),0,0,_ncolumns)
    if _ncolumns != 1
        for j = 1 to _ncolumns-1
            for i = 0 to j-1
                _r := 0.0
                for k = i to j-1
                    _r := _r + matrix_get(_Rinv,i,k,_ncolumns)*matrix_get(_R,k,j,_ncolumns)
                matrix_set(_Rinv,_r,i,j,_ncolumns)
            for k = 0 to j-1
                matrix_set(_Rinv,-matrix_get(_Rinv,k,j,_ncolumns)/matrix_get(_R,j,j,_ncolumns),k,j,_ncolumns)
            matrix_set(_Rinv,1/matrix_get(_R,j,j,_ncolumns),j,j,_ncolumns)
    //
    _Ainv = multiply(_Rinv,_QT,_ncolumns,_ncolumns,_nrows)
    _Ainv

norm_rmse(_x, _xhat) =>
    // Root Mean Square Error normalized to the sample mean
    // _x.   :: array float, original data
    // _xhat :: array float, model estimate
    // output
    // _nrmse:: float
    float _nrmse = 0.0
    if array.size(_x) != array.size(_xhat)
        _nrmse := na
    else
        int _N = array.size(_x)
        float _mse = 0.0
        for i = 0 to _N-1
            _mse := _mse + pow(array.get(_x,i) - array.get(_xhat,i),2)/_N
        _xmean = array.sum(_x)/_N
        _nrmse := sqrt(_mse) /_xmean
    _nrmse
    

diff(_src,_window,_degree) =>
    // Polynomial differentiator
    // input:
    // _src:: input series
    // _window:: integer: wigth of the moving lookback window
    // _degree:: integer: degree of fitting polynomial
    // output:
    // _diff :: series: time derivative
    // _nrmse:: float: normalized root mean square error
    //
    // Vandermonde matrix with implied dimensions (window x degree+1)
    // Linear form: J = [ [z]^0, [z]^1, ... [z]^degree], 
    //              with z = [ (1-window)/2 to (window-1)/2 ] 
    var _J = array.new_float(_window*(_degree+1),0)
    for i = 0 to _window-1 
        for j = 0 to _degree
            matrix_set(_J,pow(i,j),i,j,_window)
    // Vector of raw datapoints:
    var _Y_raw = array.new_float(_window,na)
    for j = 0 to _window-1
        array.set(_Y_raw,j,_src[_window-1-j]) 
    // Calculate polynomial coefficients which minimize the loss function
    _C = pinv(_J,_window,_degree+1)
    _a_coef = multiply(_C,_Y_raw,_degree+1,_window,1)
    // For first derivative, approximate the last point (i.e. z=window-1) by 
    float _diff = 0.0
    for i = 1 to _degree
        _diff := _diff + i*array.get(_a_coef,i)*pow(_window-1,i-1)
    // Calculates data estimate (needed for rmse)
    _Y_hat = multiply(_J,_a_coef,_window,_degree+1,1)
    float _nrmse = norm_rmse(_Y_raw,_Y_hat)
    [_diff,_nrmse]

/// --- main ---
degree = input(title="Polynomial Order", group = "Model Parameters:",
              inline = "linepar1", type = input.integer, defval=3, minval = 1)
rsi_l = input(title = "RSI Length", group = "Model Parameters:", 
              inline = "linepar1", type = input.integer, defval = 21, minval = 1,
              tooltip="The period length of RSI that is used as input.")
window = input(title="Length ( > Order)", group = "Model Parameters:",
              inline = "linepar2", type = input.integer, defval=50, minval = 2)
signalLength = input(title="Signal Length", group = "Model Parameters:",
              inline = "linepar2", type=input.integer, defval=9,
              tooltip="The signal line is a EMA of the D-RSI time series.")
islong = input(title = "Long", group = "Allowed Entries:",
              inline = "lineent",type = input.bool, defval = true)
isshort = input(title = "Short", group = "Allowed Entries:",
              inline = "lineent", type = input.bool, defval= true)
buycond = input(title="Buy", group = "Entry and Exit Conditions:", 
              inline = "linecond",type = input.string, defval="Signal Line Crossing", 
              options=["Zero-Crossing", "Signal Line Crossing","Direction Change"])
sellcond = input(title="Sell", group = "Entry and Exit Conditions:", 
              inline = "linecond",type = input.string, defval="Signal Line Crossing", 
              options=["Zero-Crossing", "Signal Line Crossing","Direction Change"])
endcond = input(title="Exit", group = "Entry and Exit Conditions:", 
              inline = "linecond",type = input.string, defval="Signal Line Crossing", 
              options=["Zero-Crossing", "Signal Line Crossing","Direction Change"])
filterlong =input(title = "Long Entries", inline = 'linefilt', group = 'Apply Filters to', 
               type = input.bool, defval = true)
filtershort =input(title = "Short Enties", inline = 'linefilt', group = 'Apply Filters to', 
               type = input.bool, defval = true)
filterend =input(title = "Exits", inline = 'linefilt', group = 'Apply Filters to', 
               type = input.bool, defval = true)
usevol =input(title = "", inline = 'linefiltvol', group = 'Relative Volume Filter:', 
               type = input.bool, defval = false)
rvol = input(title = "Volume >", inline = 'linefiltvol', group = 'Relative Volume Filter:', 
               type = input.integer, defval = 1)
len_vol = input(title = "Avg. Volume Over Period", inline = 'linefiltvol', group = 'Relative Volume Filter:', 
               type = input.integer, defval = 30, minval = 1,
               tooltip="The current volume must be greater than N times the M-period average volume.")
useatr =input(title = "", inline = 'linefiltatr', group = 'Volatility Filter:', 
               type = input.bool, defval = false)
len_atr1 = input(title = "ATR", inline = 'linefiltatr', group = 'Volatility Filter:', 
               type = input.integer, defval = 5, minval = 1)
len_atr2 = input(title = "> ATR", inline = 'linefiltatr', group = 'Volatility Filter:', 
               type = input.integer, defval = 30, minval = 1,
               tooltip="The N-period ATR must be greater than the M-period ATR.")
usersi =input(title = "", inline = 'linersi', group = 'Overbought/Oversold Filter:', 
               type = input.bool, defval = false)
rsitrhs1 = input(title = "", inline = 'linersi', group = 'Overbought/Oversold Filter:', 
               type = input.integer, defval = 0, minval=0, maxval=100)
rsitrhs2 = input(title = "< RSI (14) >", inline = 'linersi', group = 'Overbought/Oversold Filter:', 
               type = input.integer, defval = 100, minval=0, maxval=100,
               tooltip="RSI(14) must be in the range between N and M.")
issl =  input(title = "SL", inline = 'linesl1', group = 'Stop Loss / Take Profit:', 
               type = input.bool, defval = false)
slpercent =  input(title = ", %", inline = 'linesl1', group = 'Stop Loss / Take Profit:', 
               type = input.float, defval = 10, minval=0.0)
istrailing =  input(title = "Trailing", inline = 'linesl1', group = 'Stop Loss / Take Profit:', 
               type = input.bool, defval = false)
istp =  input(title = "TP", inline = 'linetp1', group = 'Stop Loss / Take Profit:', 
               type = input.bool, defval = false)
tppercent =  input(title = ", %", inline = 'linetp1', group = 'Stop Loss / Take Profit:', 
               type = input.float, defval = 20)
fixedstart =input(title="", group = "Fixed Backtest Period Start/End Dates:",
              inline = "linebac1", type = input.bool, defval = true)
backtest_start=input(title = "", type = input.time, inline = "linebac1", 
              group = "Fixed Backtest Period Start/End Dates:",
              defval = timestamp("01 Jan 2017 13:30 +0000"),
              tooltip="If deactivated, backtest staring from the first available price bar.")
fixedend =  input(title="", group = "Fixed Backtest Period Start/End Dates:",
              inline = "linebac2", type = input.bool, defval = false)
backtest_end =input(title = "", type = input.time, inline = "linebac2", 
              group = "Fixed Backtest Period Start/End Dates:",
              defval = timestamp("30 Dec 2080 23:30 +0000"),
              tooltip="If deactivated, backtesting ends at the last available price bar.")

if window < degree
    window := degree+1

src = rsi(close,rsi_l)
[drsi,nrmse] = diff(src,window,degree)
signalline = ema(drsi, signalLength)

// Conditions for D-RSI
dirchangeup = (drsi>drsi[1]) and (drsi[1]<drsi[2]) and drsi[1]<0.0
dirchangedw = (drsi<drsi[1]) and (drsi[1]>drsi[2]) and drsi[1]>0.0
crossup = crossover(drsi,0.0)
crossdw = crossunder(drsi,0.0)
crosssignalup = crossover(drsi,signalline)
crosssignaldw = crossunder(drsi,signalline)

// D-RSI signals
drsilong = (buycond=="Direction Change"?dirchangeup:(buycond=="Zero-Crossing"?crossup:crosssignalup)) 
drsishort= (sellcond=="Direction Change"?dirchangedw:(sellcond=="Zero-Crossing"?crossdw:crosssignaldw)) 
drisendlong = (endcond=="Direction Change"?dirchangedw:(endcond=="Zero-Crossing"?crossdw:crosssignaldw)) 
drisendshort= (endcond=="Direction Change"?dirchangeup:(endcond=="Zero-Crossing"?crossup:crosssignalup)) 

// Filters
rsifilter = usersi?(rsi(close,14) > rsitrhs1 and rsi(close,14) < rsitrhs2):true
volatilityfilter = useatr?(atr(len_atr1) > atr(len_atr2)):true
volumefilter = usevol?(volume > rvol*sma(volume,len_vol)):true
totalfilter = volatilityfilter and volumefilter and rsifilter

//Filtered signals
golong  = drsilong  and islong  and (filterlong?totalfilter:true) 
goshort = drsishort and isshort and (filtershort?totalfilter:true)
endlong  = drisendlong and (filterend?totalfilter:true)
endshort = drisendlong and (filterend?totalfilter:true)

// Backtest period
//backtest_start = timestamp(syminfo.timezone, startYear, startMonth, startDate, 0, 0)
//backtest_end = timestamp(syminfo.timezone, endYear, endMonth, endDate, 0, 0)
isinrange = true

// Entry price / Take profit / Stop Loss
startprice = valuewhen(condition=golong or goshort, source=close, occurrence=0)
pm = golong?1:goshort?-1:1/sign(strategy.position_size)
takeprofit = startprice*(1+pm*tppercent*0.01)
// fixed stop loss
stoploss = startprice * (1-pm*slpercent*0.01)
// trailing stop loss
if istrailing and strategy.position_size>0
    stoploss := max(close*(1 - slpercent*0.01),stoploss[1])
else if istrailing and strategy.position_size<0
    stoploss := min(close*(1 + slpercent*0.01),stoploss[1])

tpline = plot(takeprofit,color=color.blue,transp=100, title="TP")
slline = plot(stoploss,  color=color.red, transp=100, title="SL")
p1 = plot(close,transp=100,color=color.white, title="Dummy Close")
fill(p1, tpline, color=color.green, transp=istp?70:100, title="TP")
fill(p1, slline, color=color.red,   transp=issl?70:100, title="SL")

// Backtest: Basic Entry and Exit Conditions
if golong and isinrange and islong
    strategy.entry("long",   true )
    alert("D-RSI Long " + syminfo.tickerid, alert.freq_once_per_bar_close) 
if goshort and isinrange and isshort
    strategy.entry("short",  false)
    alert("D-RSI Short " + syminfo.tickerid, alert.freq_once_per_bar_close) 
if endlong
    strategy.close("long",  alert_message="Close Long")
    alert("D-RSI Exit Long " + syminfo.tickerid, alert.freq_once_per_bar_close) 
if endshort
    strategy.close("short", alert_message="Close Short")
    alert("D-RSI Exit Short " + syminfo.tickerid, alert.freq_once_per_bar_close) 

// Exit via SL or TP
strategy.exit(id="sl/tp long", from_entry="long", stop=issl?stoploss:na, 
              limit=istp?takeprofit:na, alert_message="Close Long")
strategy.exit(id="sl/tp short",from_entry="short",stop=issl?stoploss:na, 
              limit=istp?takeprofit:na, alert_message="Stop Loss Short")

// Close if outside the range
if (not isinrange)
    strategy.close_all()


もっと