이 전략은 비트코인의 매매 시기를 판단하는 여러 가지 양적 지표를 사용하여 자동 거래를 가능하게 한다. 주로 헐 지표 ((Hull), 상대적으로 강한 지수 ((RSI), 부린 밴드 ((BB) 및 거래량 진동기 ((VO) 를 포함한다.
수정된 헐 이동 평균을 사용하여 시장의 주요 추세 방향을 판단하고, 브린띠 보조 판단과 결합하여 거래점을 돌파한다.
RSI 지표는 변동 범위에 적응하여 오버 바이 오버 셀 영역을 판단하여 거래 신호를 발송합니다. 동시에 두 개의 파라미터를 Duplicate 신호 검증으로 설정합니다.
거래량 진동기는 매매력을 판단하여 가짜 돌파구를 피한다.
스톱로스/스톱스 비율 변수에 따라 스톱로스 스톱 포지션을 미리 설정하여 리스크 관리를 구현한다.
헐 곡선은 트렌드 전환을 더 빨리 포착할 수 있고, 브린은 보조 판단을 통해 가짜 신호를 줄일 수 있다.
RSI 지표의 파라미터 최적화 설정과 중복 신호 검증, 신뢰성이 높다.
거래량 진동기는 추세와 지표 신호를 결합하여 부정확한 거래를 피한다.
사전 설정된 손실 차단 방법은 개별 손실을 자동으로 제어하고, 전체 위험을 효과적으로 제어한다.
매개 변수 설정을 잘못하면 거래 빈도가 너무 높거나 신호 효과에 문제가 생길 수 있다.
갑작스러운 사건으로 인해 시장이 급격하게 변동할 때, 중지 손실이 뚫려 큰 손실을 초래할 수 있습니다.
거래 품종을 다른 통화로 교환할 때, 매개 변수는 재검사 및 최적화를 필요로 한다.
거래량 데이터가 누락되면 거래량 진동기가 작동하지 않습니다.
RSI 파라미터를 더 조합 테스트하여 최적의 파라미터를 찾습니다.
MACD, KD와 같은 다른 지표와 RSI를 조합하여 신호의 정확도를 향상 시키십시오.
모델 예측 모듈을 추가하여, 머신 러닝과 결합하여 시장 방향을 판단한다.
다른 거래 품종의 변수 효과에 대한 테스트
이 알고리즘을 이용하면 수익을 극대화할 수 있습니다.
이 전략은 여러 가지 정량 기술 지표를 통합하여 매매 시점을 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 결정한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다. 매매 시기를 판단하기 위해 매매 시기를 판단한다.
/*backtest
start: 2023-11-25 00:00:00
end: 2023-12-25 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/
// © maxencetajet
//@version=5
strategy("Strategy Crypto", overlay=true, initial_capital=1000, default_qty_type=strategy.fixed, default_qty_value=0.5, slippage=25)
src1 = input.source(close, title="Source")
target_stop_ratio = input.float(title='Risk/Reward', defval=1.5, minval=0.5, maxval=100)
startDate = input.int(title='Start Date', defval=1, minval=1, maxval=31, group="beginning Backtest")
startMonth = input.int(title='Start Month', defval=5, minval=1, maxval=12, group="beginning Backtest")
startYear = input.int(title='Start Year', defval=2022, minval=2000, maxval=2100, group="beginning Backtest")
inDateRange = time >= timestamp(syminfo.timezone, startYear, startMonth, startDate, 0, 0)
swingHighV = input.int(7, title="Swing High", group="number of past candles")
swingLowV = input.int(7, title="Swing Low", group="number of past candles")
//Hull Suite
modeSwitch = input.string("Hma", title="Hull Variation", options=["Hma", "Thma", "Ehma"], group="Hull Suite")
length = input(60, title="Length", group="Hull Suite")
lengthMult = input(3, title="Length multiplier", group="Hull Suite")
HMA(_src1, _length) =>
ta.wma(2 * ta.wma(_src1, _length / 2) - ta.wma(_src1, _length), math.round(math.sqrt(_length)))
EHMA(_src1, _length) =>
ta.ema(2 * ta.ema(_src1, _length / 2) - ta.ema(_src1, _length), math.round(math.sqrt(_length)))
THMA(_src1, _length) =>
ta.wma(ta.wma(_src1, _length / 3) * 3 - ta.wma(_src1, _length / 2) - ta.wma(_src1, _length), _length)
Mode(modeSwitch, src1, len) =>
modeSwitch == 'Hma' ? HMA(src1, len) : modeSwitch == 'Ehma' ? EHMA(src1, len) : modeSwitch == 'Thma' ? THMA(src1, len / 2) : na
_hull = Mode(modeSwitch, src1, int(length * lengthMult))
HULL = _hull
MHULL = HULL[0]
SHULL = HULL[2]
hullColor = HULL > HULL[2] ? #00ff00 : #ff0000
Fi1 = plot(MHULL, title='MHULL', color=hullColor, linewidth=1, transp=50)
Fi2 = plot(SHULL, title='SHULL', color=hullColor, linewidth=1, transp=50)
fill(Fi1, Fi2, title='Band Filler', color=hullColor, transp=40)
//QQE MOD
RSI_Period = input(6, title='RSI Length', group="QQE MOD")
SF = input(5, title='RSI Smoothing', group="QQE MOD")
QQE = input(3, title='Fast QQE Factor', group="QQE MOD")
ThreshHold = input(3, title='Thresh-hold', group="QQE MOD")
src = input(close, title='RSI Source', group="QQE MOD")
Wilders_Period = RSI_Period * 2 - 1
Rsi = ta.rsi(src, RSI_Period)
RsiMa = ta.ema(Rsi, SF)
AtrRsi = math.abs(RsiMa[1] - RsiMa)
MaAtrRsi = ta.ema(AtrRsi, Wilders_Period)
dar = ta.ema(MaAtrRsi, Wilders_Period) * QQE
longband = 0.0
shortband = 0.0
trend = 0
DeltaFastAtrRsi = dar
RSIndex = RsiMa
newshortband = RSIndex + DeltaFastAtrRsi
newlongband = RSIndex - DeltaFastAtrRsi
longband := RSIndex[1] > longband[1] and RSIndex > longband[1] ? math.max(longband[1], newlongband) : newlongband
shortband := RSIndex[1] < shortband[1] and RSIndex < shortband[1] ? math.min(shortband[1], newshortband) : newshortband
cross_1 = ta.cross(longband[1], RSIndex)
trend := ta.cross(RSIndex, shortband[1]) ? 1 : cross_1 ? -1 : nz(trend[1], 1)
FastAtrRsiTL = trend == 1 ? longband : shortband
length1 = input.int(50, minval=1, title='Bollinger Length', group="QQE MOD")
mult = input.float(0.35, minval=0.001, maxval=5, step=0.1, title='BB Multiplier', group="QQE MOD")
basis = ta.sma(FastAtrRsiTL - 50, length1)
dev = mult * ta.stdev(FastAtrRsiTL - 50, length1)
upper = basis + dev
lower = basis - dev
color_bar = RsiMa - 50 > upper ? #00c3ff : RsiMa - 50 < lower ? #ff0062 : color.gray
QQEzlong = 0
QQEzlong := nz(QQEzlong[1])
QQEzshort = 0
QQEzshort := nz(QQEzshort[1])
QQEzlong := RSIndex >= 50 ? QQEzlong + 1 : 0
QQEzshort := RSIndex < 50 ? QQEzshort + 1 : 0
RSI_Period2 = input(6, title='RSI Length', group="QQE MOD")
SF2 = input(5, title='RSI Smoothing', group="QQE MOD")
QQE2 = input(1.61, title='Fast QQE2 Factor', group="QQE MOD")
ThreshHold2 = input(3, title='Thresh-hold', group="QQE MOD")
src2 = input(close, title='RSI Source', group="QQE MOD")
Wilders_Period2 = RSI_Period2 * 2 - 1
Rsi2 = ta.rsi(src2, RSI_Period2)
RsiMa2 = ta.ema(Rsi2, SF2)
AtrRsi2 = math.abs(RsiMa2[1] - RsiMa2)
MaAtrRsi2 = ta.ema(AtrRsi2, Wilders_Period2)
dar2 = ta.ema(MaAtrRsi2, Wilders_Period2) * QQE2
longband2 = 0.0
shortband2 = 0.0
trend2 = 0
DeltaFastAtrRsi2 = dar2
RSIndex2 = RsiMa2
newshortband2 = RSIndex2 + DeltaFastAtrRsi2
newlongband2 = RSIndex2 - DeltaFastAtrRsi2
longband2 := RSIndex2[1] > longband2[1] and RSIndex2 > longband2[1] ? math.max(longband2[1], newlongband2) : newlongband2
shortband2 := RSIndex2[1] < shortband2[1] and RSIndex2 < shortband2[1] ? math.min(shortband2[1], newshortband2) : newshortband2
cross_2 = ta.cross(longband2[1], RSIndex2)
trend2 := ta.cross(RSIndex2, shortband2[1]) ? 1 : cross_2 ? -1 : nz(trend2[1], 1)
FastAtrRsi2TL = trend2 == 1 ? longband2 : shortband2
QQE2zlong = 0
QQE2zlong := nz(QQE2zlong[1])
QQE2zshort = 0
QQE2zshort := nz(QQE2zshort[1])
QQE2zlong := RSIndex2 >= 50 ? QQE2zlong + 1 : 0
QQE2zshort := RSIndex2 < 50 ? QQE2zshort + 1 : 0
hcolor2 = RsiMa2 - 50 > ThreshHold2 ? color.silver : RsiMa2 - 50 < 0 - ThreshHold2 ? color.silver : na
Greenbar1 = RsiMa2 - 50 > ThreshHold2
Greenbar2 = RsiMa - 50 > upper
Redbar1 = RsiMa2 - 50 < 0 - ThreshHold2
Redbar2 = RsiMa - 50 < lower
//Volume Oscillator
var cumVol = 0.
cumVol += nz(volume)
if barstate.islast and cumVol == 0
runtime.error("No volume is provided by the data vendor.")
shortlen = input.int(5, minval=1, title = "Short Length", group="Volume Oscillator")
longlen = input.int(10, minval=1, title = "Long Length", group="Volume Oscillator")
short = ta.ema(volume, shortlen)
long = ta.ema(volume, longlen)
osc = 100 * (short - long) / long
//strategy
enterLong = ' { "message_type": "bot", "bot_id": 4635591, "email_token": "25byourtefcodeuufyd2-43314-ab98-bjorg224", "delay_seconds": 1} ' //start long deal
ExitLong = ' { "message_type": "bot", "bot_id": 4635591, "email_token": "25byourtefcodeuufyd2-43314-ab98-bjorg224", "delay_seconds": 0, "action": "close_at_market_price"} ' // close long deal market
enterShort = ' { "message_type": "bot", "bot_id": 4635690, "email_token": "25byourtefcodeuufyd2-43314-ab98-bjorg224", "delay_seconds": 1} ' // start short deal
ExitShort = ' { "message_type": "bot", "bot_id": 4635690, "email_token": "25byourtefcodeuufyd2-43314-ab98-bjorg224", "delay_seconds": 0, "action": "close_at_market_price"} ' // close short deal market
longcondition = close > MHULL and HULL > HULL[2] and osc > 0 and Greenbar1 and Greenbar2 and not Greenbar1[1] and not Greenbar2[1]
shortcondition = close < SHULL and HULL < HULL[2] and osc > 0 and Redbar1 and Redbar2 and not Redbar1[1] and not Redbar2[1]
float risk_long = na
float risk_short = na
float stopLoss = na
float takeProfit = na
float entry_price = na
risk_long := risk_long[1]
risk_short := risk_short[1]
swingHigh = ta.highest(high, swingHighV)
swingLow = ta.lowest(low, swingLowV)
if strategy.position_size == 0 and longcondition and inDateRange
risk_long := (close - swingLow) / close
strategy.entry("long", strategy.long, comment="Buy", alert_message=enterLong)
if strategy.position_size == 0 and shortcondition and inDateRange
risk_short := (swingHigh - close) / close
strategy.entry("short", strategy.short, comment="Sell", alert_message=enterShort)
if strategy.position_size > 0
stopLoss := strategy.position_avg_price * (1 - risk_long)
takeProfit := strategy.position_avg_price * (1 + target_stop_ratio * risk_long)
entry_price := strategy.position_avg_price
strategy.exit("long exit", "long", stop = stopLoss, limit = takeProfit, alert_message=ExitLong)
if strategy.position_size < 0
stopLoss := strategy.position_avg_price * (1 + risk_short)
takeProfit := strategy.position_avg_price * (1 - target_stop_ratio * risk_short)
entry_price := strategy.position_avg_price
strategy.exit("short exit", "short", stop = stopLoss, limit = takeProfit, alert_message=ExitShort)
p_ep = plot(entry_price, color=color.new(color.white, 0), linewidth=2, style=plot.style_linebr, title='entry price')
p_sl = plot(stopLoss, color=color.new(color.red, 0), linewidth=2, style=plot.style_linebr, title='stopLoss')
p_tp = plot(takeProfit, color=color.new(color.green, 0), linewidth=2, style=plot.style_linebr, title='takeProfit')
fill(p_sl, p_ep, color.new(color.red, transp=85))
fill(p_tp, p_ep, color.new(color.green, transp=85))