리소스 로딩... 로딩...

거래 시간과 결합된 다중 시간 프레임 이동 평균 수량 거래 전략

저자:차오장, 날짜: 2024-01-12 11:50:37
태그:

img

전반적인 설명

이 전략은 여러 이동 평균 지표를 활용하고 거래 시간에 따라 입출시기를 결합하여 양적 거래를 구현합니다.

전략 논리

이 전략은 SMA, EMA, WMA 등을 포함한 9 가지 유형의 이동 평균을 포함합니다. 긴 진입을 위해, 닫는 가격은 선택한 이동 평균보다 높고 이전 닫는 것은 이동 평균보다 낮습니다. 짧은 진입을 위해 닫는 가격은 이전 닫는 동안 이동 평균보다 낮습니다. 모든 거래는 월요일만 열립니다. 출구 규칙은 고정되어 있습니다. 이익 / 손실을 멈추거나 일요일 종료 전에 모든 포지션을 닫습니다.

이점 분석

이 전략은 여러 이동 평균의 본질을 결합하고 사용자가 변화하는 시장 조건에 따라 다른 매개 변수를 선택할 수 있습니다. 트렌드가 확인되었을 때만 진입하여 화익을 피합니다. 또한 월요일에만 엔트리를 제한하고 일요일에는 스톱 로스 / 취득으로 종료되며 일주일에 최대 거래를 제한하고 거래 위험을 제어합니다.

위험 분석

이 전략은 트렌드를 결정하기 위해 주로 이동 평균에 의존하고 있으며, 따라서 반전에 걸리는 위험에 직면합니다. 또한 월요일로 엔트리를 제한하는 것은 좋은 설정이 일주일 후반에 나타나면 수익 기회를 놓친 것을 의미합니다.

이러한 위험을 해결하기 위해, 동적 평균 매개 변수를 사용하여 범위 기간 동안의 길이를 단축할 수 있습니다. 또한 수요일이나 목요일과 같은 추가 입력 날을 허용 할 수 있습니다.

최적화 방향

이 전략은 다음과 같은 방법으로 개선될 수 있습니다.

  1. 다이내믹하게 레벨을 조정하기 위해 적응적인 스톱 로스/프로피트 테크 알고리즘을 추가합니다.

  2. 기계 학습 모델을 통합하여 불안정한 시장의 트렌드를 더 잘 측정합니다.

  3. 더 많은 거래 기회를 잡기 위해 진입과 출구 논리를 정제하십시오.

요약

이 전략은 트렌드 방향을 결정하기 위해 여러 이동 평균 지표를 결합하고 월요일 입출장 및 일요일 출출 규칙으로 최대 주간 거래를 제한합니다. 엄격한 스톱 로스 / 취득은 거래당 최대 손실을 추가로 제한합니다. 요약하면 양적 거래에 대한 트렌드 결정 및 위험 관리 차원 모두에서 강력한 향상을 제공합니다.


/*backtest
start: 2023-12-01 00:00:00
end: 2023-12-31 23:59:59
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © exlux99

//@version=5
strategy('Time MA strategy ', overlay=true)

longEntry = input.bool(true, group="Type of Entries")
shortEntry = input.bool(false, group="Type of Entries")


//==========DEMA
getDEMA(src, len) =>
    dema = 2 * ta.ema(src, len) - ta.ema(ta.ema(src, len), len)
    dema
//==========HMA
getHULLMA(src, len) =>
    hullma = ta.wma(2 * ta.wma(src, len / 2) - ta.wma(src, len), math.round(math.sqrt(len)))
    hullma
//==========KAMA
getKAMA(src, len, k1, k2) =>
    change = math.abs(ta.change(src, len))
    volatility = math.sum(math.abs(ta.change(src)), len)
    efficiency_ratio = volatility != 0 ? change / volatility : 0
    kama = 0.0
    fast = 2 / (k1 + 1)
    slow = 2 / (k2 + 1)
    smooth_const = math.pow(efficiency_ratio * (fast - slow) + slow, 2)
    kama := nz(kama[1]) + smooth_const * (src - nz(kama[1]))
    kama
//==========TEMA
getTEMA(src, len) =>
    e = ta.ema(src, len)
    tema = 3 * (e - ta.ema(e, len)) + ta.ema(ta.ema(e, len), len)
    tema
//==========ZLEMA
getZLEMA(src, len) =>
    zlemalag_1 = (len - 1) / 2
    zlemadata_1 = src + src - src[zlemalag_1]
    zlema = ta.ema(zlemadata_1, len)
    zlema
//==========FRAMA
getFRAMA(src, len) =>
    Price = src
    N = len
    if N % 2 != 0
        N := N + 1
        N
    N1 = 0.0
    N2 = 0.0
    N3 = 0.0
    HH = 0.0
    LL = 0.0
    Dimen = 0.0
    alpha = 0.0
    Filt = 0.0
    N3 := (ta.highest(N) - ta.lowest(N)) / N
    HH := ta.highest(N / 2 - 1)
    LL := ta.lowest(N / 2 - 1)
    N1 := (HH - LL) / (N / 2)
    HH := high[N / 2]
    LL := low[N / 2]
    for i = N / 2 to N - 1 by 1
        if high[i] > HH
            HH := high[i]
            HH
        if low[i] < LL
            LL := low[i]
            LL
    N2 := (HH - LL) / (N / 2)
    if N1 > 0 and N2 > 0 and N3 > 0
        Dimen := (math.log(N1 + N2) - math.log(N3)) / math.log(2)
        Dimen
    alpha := math.exp(-4.6 * (Dimen - 1))
    if alpha < .01
        alpha := .01
        alpha
    if alpha > 1
        alpha := 1
        alpha
    Filt := alpha * Price + (1 - alpha) * nz(Filt[1], 1)
    if bar_index < N + 1
        Filt := Price
        Filt
    Filt
//==========VIDYA
getVIDYA(src, len) =>
    mom = ta.change(src)
    upSum = math.sum(math.max(mom, 0), len)
    downSum = math.sum(-math.min(mom, 0), len)
    out = (upSum - downSum) / (upSum + downSum)
    cmo = math.abs(out)
    alpha = 2 / (len + 1)
    vidya = 0.0
    vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo)
    vidya
//==========JMA
getJMA(src, len, power, phase) =>
    phase_ratio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
    beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
    alpha = math.pow(beta, power)
    MA1 = 0.0
    Det0 = 0.0
    MA2 = 0.0
    Det1 = 0.0
    JMA = 0.0
    MA1 := (1 - alpha) * src + alpha * nz(MA1[1])
    Det0 := (src - MA1) * (1 - beta) + beta * nz(Det0[1])
    MA2 := MA1 + phase_ratio * Det0
    Det1 := (MA2 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(Det1[1])
    JMA := nz(JMA[1]) + Det1
    JMA
//==========T3
getT3(src, len, vFactor) =>
    ema1 = ta.ema(src, len)
    ema2 = ta.ema(ema1, len)
    ema3 = ta.ema(ema2, len)
    ema4 = ta.ema(ema3, len)
    ema5 = ta.ema(ema4, len)
    ema6 = ta.ema(ema5, len)
    c1 = -1 * math.pow(vFactor, 3)
    c2 = 3 * math.pow(vFactor, 2) + 3 * math.pow(vFactor, 3)
    c3 = -6 * math.pow(vFactor, 2) - 3 * vFactor - 3 * math.pow(vFactor, 3)
    c4 = 1 + 3 * vFactor + math.pow(vFactor, 3) + 3 * math.pow(vFactor, 2)
    T3 = c1 * ema6 + c2 * ema5 + c3 * ema4 + c4 * ema3
    T3
//==========TRIMA
getTRIMA(src, len) =>
    N = len + 1
    Nm = math.round(N / 2)
    TRIMA = ta.sma(ta.sma(src, Nm), Nm)
    TRIMA


src = input.source(close, title='Source', group='Parameters')
len = input.int(17, minval=1, title='Moving Averages', group='Parameters')
out_ma_source = input.string(title='MA Type', defval='ALMA', options=['SMA', 'EMA', 'WMA', 'ALMA', 'SMMA', 'LSMA', 'VWMA', 'DEMA', 'HULL', 'KAMA', 'FRAMA', 'VIDYA', 'JMA', 'TEMA', 'ZLEMA', 'T3', 'TRIM'], group='Parameters')
out_ma = out_ma_source == 'SMA' ? ta.sma(src, len) : out_ma_source == 'EMA' ? ta.ema(src, len) : out_ma_source == 'WMA' ? ta.wma(src, len) : out_ma_source == 'ALMA' ? ta.alma(src, len, 0.85, 6) : out_ma_source == 'SMMA' ? ta.rma(src, len) : out_ma_source == 'LSMA' ? ta.linreg(src, len, 0) : out_ma_source == 'VWMA' ? ta.vwma(src, len) : out_ma_source == 'DEMA' ? getDEMA(src, len) : out_ma_source == 'HULL' ? ta.hma(src, len) : out_ma_source == 'KAMA' ? getKAMA(src, len, 2, 30) : out_ma_source == 'FRAMA' ? getFRAMA(src, len) : out_ma_source == 'VIDYA' ? getVIDYA(src, len) : out_ma_source == 'JMA' ? getJMA(src, len, 2, 50) : out_ma_source == 'TEMA' ? getTEMA(src, len) : out_ma_source == 'ZLEMA' ? getZLEMA(src, len) : out_ma_source == 'T3' ? getT3(src, len, 0.7) : out_ma_source == 'TRIM' ? getTRIMA(src, len) : na


plot(out_ma)

long = close> out_ma and close[1] < out_ma and dayofweek==dayofweek.monday
short = close< out_ma and close[1] > out_ma and dayofweek==dayofweek.monday


stopPer = input.float(10.0, title='LONG Stop Loss % ', group='Fixed Risk Management') / 100
takePer = input.float(30.0, title='LONG Take Profit %', group='Fixed Risk Management') / 100

stopPerShort = input.float(5.0, title='SHORT Stop Loss % ', group='Fixed Risk Management') / 100
takePerShort = input.float(10.0, title='SHORT Take Profit %', group='Fixed Risk Management') / 100


longStop = strategy.position_avg_price * (1 - stopPer)
longTake = strategy.position_avg_price * (1 + takePer)

shortStop = strategy.position_avg_price * (1 + stopPerShort)
shortTake = strategy.position_avg_price * (1 - takePerShort)

// strategy.risk.max_intraday_filled_orders(2) // After 10 orders are filled, no more strategy orders will be placed (except for a market order to exit current open market position, if there is any).

if(longEntry)
    strategy.entry("long",strategy.long,when=long )
    strategy.exit('LONG EXIT', "long", limit=longTake, stop=longStop)
    strategy.close("long",when=dayofweek==dayofweek.sunday)

if(shortEntry)
    strategy.entry("short",strategy.short,when=short )
    strategy.exit('SHORT EXIT', "short", limit=shortTake, stop=shortStop)
    strategy.close("short",when=dayofweek==dayofweek.sunday)



더 많은