이 전략은 다항식 중립을 기반으로 RSI 운동량 지표 델타-RSI를 사용하여 거래 신호를 생성합니다. 이 전략은 일부
이 전략의 핵심 지표는 델타-RSI입니다. 계산 단계는 다음과 같습니다.
전략은 ATR, 볼륨 및 RSI 필터를 사용하여 신호를 필터링합니다.
이 전략의 장점은 다음과 같습니다.
이 전략의 위험은 다음과 같습니다.
이들은 매개 변수 최적화, 필터 조정 및 더 단단한 정지로 제어 할 수 있습니다.
이 전략은 다음으로 더 향상될 수 있습니다.
델타-RSI의 높은 민감성과 엄격한 필터링 메커니즘을 이용함으로써, 이 전략은 위험을 제어하면서 품질을 향상시킬 수 있다. 추가 매개 변수 및 모델 최적화는 긍정적 인 이익율을 확대할 수 있다. 이는 효과적인 양적 거래 전략이다.
/*backtest start: 2024-01-04 00:00:00 end: 2024-01-11 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © tbiktag // // Delta-RSI Oscillator Strategy With Filters // // This is a version of the Delta-RSI Oscillator Strategy compatible with // the Strategy Tester. // // This version also allows filtering the trade signals generated by Delts-RSI // by means of volatility (defined by ATR), relative volume and RSI(14). // // Delta-RSI (© tbiktag) is a smoothed time derivative of the RSI designed // as a momentum indicator. For the original publication, see link below: // https://www.tradingview.com/script/OXQVFTQD-Delta-RSI-Oscillator/ // // D-RSI model parameters: // RSI Length: The timeframe of the RSI that serves as an input to D-RSI. // Frame Length: The length of the lookback frame used for local regression. // Polynomial Order: The order of the local polynomial function used to interpolate // the RSI. // Trade signals are generated based on three optional conditions: // - Zero-crossing: bullish when D-RSI crosses zero from negative to positive // values (bearish otherwise) // - Signal Line Crossing: bullish when D-RSI crosses from below to above the signal // line (bearish otherwise) // - Direction Change: bullish when D-RSI was negative and starts ascending // (bearish otherwise) // //@version=4 strategy(title="Delta-RSI Strategy with Filters", shorttitle = "D-RSI with filters", overlay = true) // ---Subroutines--- matrix_get(_A,_i,_j,_nrows) => // Get the value of the element of an implied 2d matrix //input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _i :: integer: row number // _j :: integer: column number // _nrows :: integer: number of rows in the implied 2d matrix array.get(_A,_i+_nrows*_j) matrix_set(_A,_value,_i,_j,_nrows) => // Set a value to the element of an implied 2d matrix //input: // _A :: array, changed on output: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _value :: float: the new value to be set // _i :: integer: row number // _j :: integer: column number // _nrows :: integer: number of rows in the implied 2d matrix array.set(_A,_i+_nrows*_j,_value) transpose(_A,_nrows,_ncolumns) => // Transpose an implied 2d matrix // input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _nrows :: integer: number of rows in _A // _ncolumns :: integer: number of columns in _A // output: // _AT :: array: pseudo 2d matrix with implied dimensions: _ncolums x _nrows var _AT = array.new_float(_nrows*_ncolumns,0) for i = 0 to _nrows-1 for j = 0 to _ncolumns-1 matrix_set(_AT, matrix_get(_A,i,j,_nrows),j,i,_ncolumns) _AT multiply(_A,_B,_nrowsA,_ncolumnsA,_ncolumnsB) => // Calculate scalar product of two matrices // input: // _A :: array: pseudo 2d matrix // _B :: array: pseudo 2d matrix // _nrowsA :: integer: number of rows in _A // _ncolumnsA :: integer: number of columns in _A // _ncolumnsB :: integer: number of columns in _B // output: // _C:: array: pseudo 2d matrix with implied dimensions _nrowsA x _ncolumnsB var _C = array.new_float(_nrowsA*_ncolumnsB,0) int _nrowsB = _ncolumnsA float elementC= 0.0 for i = 0 to _nrowsA-1 for j = 0 to _ncolumnsB-1 elementC := 0 for k = 0 to _ncolumnsA-1 elementC := elementC + matrix_get(_A,i,k,_nrowsA)*matrix_get(_B,k,j,_nrowsB) matrix_set(_C,elementC,i,j,_nrowsA) _C vnorm(_X,_n) => //Square norm of vector _X with size _n float _norm = 0.0 for i = 0 to _n-1 _norm := _norm + pow(array.get(_X,i),2) sqrt(_norm) qr_diag(_A,_nrows,_ncolumns) => //QR Decomposition with Modified Gram-Schmidt Algorithm (Column-Oriented) // input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _nrows :: integer: number of rows in _A // _ncolumns :: integer: number of columns in _A // output: // _Q: unitary matrix, implied dimenstions _nrows x _ncolumns // _R: upper triangular matrix, implied dimansions _ncolumns x _ncolumns var _Q = array.new_float(_nrows*_ncolumns,0) var _R = array.new_float(_ncolumns*_ncolumns,0) var _a = array.new_float(_nrows,0) var _q = array.new_float(_nrows,0) float _r = 0.0 float _aux = 0.0 //get first column of _A and its norm: for i = 0 to _nrows-1 array.set(_a,i,matrix_get(_A,i,0,_nrows)) _r := vnorm(_a,_nrows) //assign first diagonal element of R and first column of Q matrix_set(_R,_r,0,0,_ncolumns) for i = 0 to _nrows-1 matrix_set(_Q,array.get(_a,i)/_r,i,0,_nrows) if _ncolumns != 1 //repeat for the rest of the columns for k = 1 to _ncolumns-1 for i = 0 to _nrows-1 array.set(_a,i,matrix_get(_A,i,k,_nrows)) for j = 0 to k-1 //get R_jk as scalar product of Q_j column and A_k column: _r := 0 for i = 0 to _nrows-1 _r := _r + matrix_get(_Q,i,j,_nrows)*array.get(_a,i) matrix_set(_R,_r,j,k,_ncolumns) //update vector _a for i = 0 to _nrows-1 _aux := array.get(_a,i) - _r*matrix_get(_Q,i,j,_nrows) array.set(_a,i,_aux) //get diagonal R_kk and Q_k column _r := vnorm(_a,_nrows) matrix_set(_R,_r,k,k,_ncolumns) for i = 0 to _nrows-1 matrix_set(_Q,array.get(_a,i)/_r,i,k,_nrows) [_Q,_R] pinv(_A,_nrows,_ncolumns) => //Pseudoinverse of matrix _A calculated using QR decomposition // Input: // _A:: array: implied as a (_nrows x _ncolumns) matrix //. _A = [[column_0],[column_1],...,[column_(_ncolumns-1)]] // Output: // _Ainv:: array implied as a (_ncolumns x _nrows) matrix // _A = [[row_0],[row_1],...,[row_(_nrows-1)]] // ---- // First find the QR factorization of A: A = QR, // where R is upper triangular matrix. // Then _Ainv = R^-1*Q^T. // ---- [_Q,_R] = qr_diag(_A,_nrows,_ncolumns) _QT = transpose(_Q,_nrows,_ncolumns) // Calculate Rinv: var _Rinv = array.new_float(_ncolumns*_ncolumns,0) float _r = 0.0 matrix_set(_Rinv,1/matrix_get(_R,0,0,_ncolumns),0,0,_ncolumns) if _ncolumns != 1 for j = 1 to _ncolumns-1 for i = 0 to j-1 _r := 0.0 for k = i to j-1 _r := _r + matrix_get(_Rinv,i,k,_ncolumns)*matrix_get(_R,k,j,_ncolumns) matrix_set(_Rinv,_r,i,j,_ncolumns) for k = 0 to j-1 matrix_set(_Rinv,-matrix_get(_Rinv,k,j,_ncolumns)/matrix_get(_R,j,j,_ncolumns),k,j,_ncolumns) matrix_set(_Rinv,1/matrix_get(_R,j,j,_ncolumns),j,j,_ncolumns) // _Ainv = multiply(_Rinv,_QT,_ncolumns,_ncolumns,_nrows) _Ainv norm_rmse(_x, _xhat) => // Root Mean Square Error normalized to the sample mean // _x. :: array float, original data // _xhat :: array float, model estimate // output // _nrmse:: float float _nrmse = 0.0 if array.size(_x) != array.size(_xhat) _nrmse := na else int _N = array.size(_x) float _mse = 0.0 for i = 0 to _N-1 _mse := _mse + pow(array.get(_x,i) - array.get(_xhat,i),2)/_N _xmean = array.sum(_x)/_N _nrmse := sqrt(_mse) /_xmean _nrmse diff(_src,_window,_degree) => // Polynomial differentiator // input: // _src:: input series // _window:: integer: wigth of the moving lookback window // _degree:: integer: degree of fitting polynomial // output: // _diff :: series: time derivative // _nrmse:: float: normalized root mean square error // // Vandermonde matrix with implied dimensions (window x degree+1) // Linear form: J = [ [z]^0, [z]^1, ... [z]^degree], // with z = [ (1-window)/2 to (window-1)/2 ] var _J = array.new_float(_window*(_degree+1),0) for i = 0 to _window-1 for j = 0 to _degree matrix_set(_J,pow(i,j),i,j,_window) // Vector of raw datapoints: var _Y_raw = array.new_float(_window,na) for j = 0 to _window-1 array.set(_Y_raw,j,_src[_window-1-j]) // Calculate polynomial coefficients which minimize the loss function _C = pinv(_J,_window,_degree+1) _a_coef = multiply(_C,_Y_raw,_degree+1,_window,1) // For first derivative, approximate the last point (i.e. z=window-1) by float _diff = 0.0 for i = 1 to _degree _diff := _diff + i*array.get(_a_coef,i)*pow(_window-1,i-1) // Calculates data estimate (needed for rmse) _Y_hat = multiply(_J,_a_coef,_window,_degree+1,1) float _nrmse = norm_rmse(_Y_raw,_Y_hat) [_diff,_nrmse] /// --- main --- degree = input(title="Polynomial Order", group = "Model Parameters:", inline = "linepar1", type = input.integer, defval=3, minval = 1) rsi_l = input(title = "RSI Length", group = "Model Parameters:", inline = "linepar1", type = input.integer, defval = 21, minval = 1, tooltip="The period length of RSI that is used as input.") window = input(title="Length ( > Order)", group = "Model Parameters:", inline = "linepar2", type = input.integer, defval=50, minval = 2) signalLength = input(title="Signal Length", group = "Model Parameters:", inline = "linepar2", type=input.integer, defval=9, tooltip="The signal line is a EMA of the D-RSI time series.") islong = input(title = "Long", group = "Allowed Entries:", inline = "lineent",type = input.bool, defval = true) isshort = input(title = "Short", group = "Allowed Entries:", inline = "lineent", type = input.bool, defval= true) buycond = input(title="Buy", group = "Entry and Exit Conditions:", inline = "linecond",type = input.string, defval="Signal Line Crossing", options=["Zero-Crossing", "Signal Line Crossing","Direction Change"]) sellcond = input(title="Sell", group = "Entry and Exit Conditions:", inline = "linecond",type = input.string, defval="Signal Line Crossing", options=["Zero-Crossing", "Signal Line Crossing","Direction Change"]) endcond = input(title="Exit", group = "Entry and Exit Conditions:", inline = "linecond",type = input.string, defval="Signal Line Crossing", options=["Zero-Crossing", "Signal Line Crossing","Direction Change"]) filterlong =input(title = "Long Entries", inline = 'linefilt', group = 'Apply Filters to', type = input.bool, defval = true) filtershort =input(title = "Short Enties", inline = 'linefilt', group = 'Apply Filters to', type = input.bool, defval = true) filterend =input(title = "Exits", inline = 'linefilt', group = 'Apply Filters to', type = input.bool, defval = true) usevol =input(title = "", inline = 'linefiltvol', group = 'Relative Volume Filter:', type = input.bool, defval = false) rvol = input(title = "Volume >", inline = 'linefiltvol', group = 'Relative Volume Filter:', type = input.integer, defval = 1) len_vol = input(title = "Avg. Volume Over Period", inline = 'linefiltvol', group = 'Relative Volume Filter:', type = input.integer, defval = 30, minval = 1, tooltip="The current volume must be greater than N times the M-period average volume.") useatr =input(title = "", inline = 'linefiltatr', group = 'Volatility Filter:', type = input.bool, defval = false) len_atr1 = input(title = "ATR", inline = 'linefiltatr', group = 'Volatility Filter:', type = input.integer, defval = 5, minval = 1) len_atr2 = input(title = "> ATR", inline = 'linefiltatr', group = 'Volatility Filter:', type = input.integer, defval = 30, minval = 1, tooltip="The N-period ATR must be greater than the M-period ATR.") usersi =input(title = "", inline = 'linersi', group = 'Overbought/Oversold Filter:', type = input.bool, defval = false) rsitrhs1 = input(title = "", inline = 'linersi', group = 'Overbought/Oversold Filter:', type = input.integer, defval = 0, minval=0, maxval=100) rsitrhs2 = input(title = "< RSI (14) >", inline = 'linersi', group = 'Overbought/Oversold Filter:', type = input.integer, defval = 100, minval=0, maxval=100, tooltip="RSI(14) must be in the range between N and M.") issl = input(title = "SL", inline = 'linesl1', group = 'Stop Loss / Take Profit:', type = input.bool, defval = false) slpercent = input(title = ", %", inline = 'linesl1', group = 'Stop Loss / Take Profit:', type = input.float, defval = 10, minval=0.0) istrailing = input(title = "Trailing", inline = 'linesl1', group = 'Stop Loss / Take Profit:', type = input.bool, defval = false) istp = input(title = "TP", inline = 'linetp1', group = 'Stop Loss / Take Profit:', type = input.bool, defval = false) tppercent = input(title = ", %", inline = 'linetp1', group = 'Stop Loss / Take Profit:', type = input.float, defval = 20) fixedstart =input(title="", group = "Fixed Backtest Period Start/End Dates:", inline = "linebac1", type = input.bool, defval = true) backtest_start=input(title = "", type = input.time, inline = "linebac1", group = "Fixed Backtest Period Start/End Dates:", defval = timestamp("01 Jan 2017 13:30 +0000"), tooltip="If deactivated, backtest staring from the first available price bar.") fixedend = input(title="", group = "Fixed Backtest Period Start/End Dates:", inline = "linebac2", type = input.bool, defval = false) backtest_end =input(title = "", type = input.time, inline = "linebac2", group = "Fixed Backtest Period Start/End Dates:", defval = timestamp("30 Dec 2080 23:30 +0000"), tooltip="If deactivated, backtesting ends at the last available price bar.") if window < degree window := degree+1 src = rsi(close,rsi_l) [drsi,nrmse] = diff(src,window,degree) signalline = ema(drsi, signalLength) // Conditions for D-RSI dirchangeup = (drsi>drsi[1]) and (drsi[1]<drsi[2]) and drsi[1]<0.0 dirchangedw = (drsi<drsi[1]) and (drsi[1]>drsi[2]) and drsi[1]>0.0 crossup = crossover(drsi,0.0) crossdw = crossunder(drsi,0.0) crosssignalup = crossover(drsi,signalline) crosssignaldw = crossunder(drsi,signalline) // D-RSI signals drsilong = (buycond=="Direction Change"?dirchangeup:(buycond=="Zero-Crossing"?crossup:crosssignalup)) drsishort= (sellcond=="Direction Change"?dirchangedw:(sellcond=="Zero-Crossing"?crossdw:crosssignaldw)) drisendlong = (endcond=="Direction Change"?dirchangedw:(endcond=="Zero-Crossing"?crossdw:crosssignaldw)) drisendshort= (endcond=="Direction Change"?dirchangeup:(endcond=="Zero-Crossing"?crossup:crosssignalup)) // Filters rsifilter = usersi?(rsi(close,14) > rsitrhs1 and rsi(close,14) < rsitrhs2):true volatilityfilter = useatr?(atr(len_atr1) > atr(len_atr2)):true volumefilter = usevol?(volume > rvol*sma(volume,len_vol)):true totalfilter = volatilityfilter and volumefilter and rsifilter //Filtered signals golong = drsilong and islong and (filterlong?totalfilter:true) goshort = drsishort and isshort and (filtershort?totalfilter:true) endlong = drisendlong and (filterend?totalfilter:true) endshort = drisendlong and (filterend?totalfilter:true) // Backtest period //backtest_start = timestamp(syminfo.timezone, startYear, startMonth, startDate, 0, 0) //backtest_end = timestamp(syminfo.timezone, endYear, endMonth, endDate, 0, 0) isinrange = true // Entry price / Take profit / Stop Loss startprice = valuewhen(condition=golong or goshort, source=close, occurrence=0) pm = golong?1:goshort?-1:1/sign(strategy.position_size) takeprofit = startprice*(1+pm*tppercent*0.01) // fixed stop loss stoploss = startprice * (1-pm*slpercent*0.01) // trailing stop loss if istrailing and strategy.position_size>0 stoploss := max(close*(1 - slpercent*0.01),stoploss[1]) else if istrailing and strategy.position_size<0 stoploss := min(close*(1 + slpercent*0.01),stoploss[1]) tpline = plot(takeprofit,color=color.blue,transp=100, title="TP") slline = plot(stoploss, color=color.red, transp=100, title="SL") p1 = plot(close,transp=100,color=color.white, title="Dummy Close") fill(p1, tpline, color=color.green, transp=istp?70:100, title="TP") fill(p1, slline, color=color.red, transp=issl?70:100, title="SL") // Backtest: Basic Entry and Exit Conditions if golong and isinrange and islong strategy.entry("long", true ) alert("D-RSI Long " + syminfo.tickerid, alert.freq_once_per_bar_close) if goshort and isinrange and isshort strategy.entry("short", false) alert("D-RSI Short " + syminfo.tickerid, alert.freq_once_per_bar_close) if endlong strategy.close("long", alert_message="Close Long") alert("D-RSI Exit Long " + syminfo.tickerid, alert.freq_once_per_bar_close) if endshort strategy.close("short", alert_message="Close Short") alert("D-RSI Exit Short " + syminfo.tickerid, alert.freq_once_per_bar_close) // Exit via SL or TP strategy.exit(id="sl/tp long", from_entry="long", stop=issl?stoploss:na, limit=istp?takeprofit:na, alert_message="Close Long") strategy.exit(id="sl/tp short",from_entry="short",stop=issl?stoploss:na, limit=istp?takeprofit:na, alert_message="Stop Loss Short") // Close if outside the range if (not isinrange) strategy.close_all()