Artikel berkaitan:https://www.fmz.com/bbs-topic/10545
import _thread import json import math import csv import random import os import datetime as dt from http.server import HTTPServer, BaseHTTPRequestHandler from urllib.parse import parse_qs, urlparse arrTrendType = ["down", "slow_up", "sharp_down", "sharp_up", "narrow_range", "wide_range", "neutral_random"] def url2Dict(url): query = urlparse(url).query params = parse_qs(query) result = {key: params[key][0] for key in params} return result class Provider(BaseHTTPRequestHandler): def do_GET(self): global filePathForCSV, pround, vround, ct try: self.send_response(200) self.send_header("Content-type", "application/json") self.end_headers() dictParam = url2Dict(self.path) Log("自定义数据源服务接收到请求,self.path:", self.path, "query 参数:", dictParam) eid = dictParam["eid"] symbol = dictParam["symbol"] arrCurrency = symbol.split(".")[0].split("_") baseCurrency = arrCurrency[0] quoteCurrency = arrCurrency[1] fromTS = int(dictParam["from"]) * int(1000) toTS = int(dictParam["to"]) * int(1000) priceRatio = math.pow(10, int(pround)) amountRatio = math.pow(10, int(vround)) data = { "detail": { "eid": eid, "symbol": symbol, "alias": symbol, "baseCurrency": baseCurrency, "quoteCurrency": quoteCurrency, "marginCurrency": quoteCurrency, "basePrecision": vround, "quotePrecision": pround, "minQty": 0.00001, "maxQty": 9000, "minNotional": 5, "maxNotional": 9000000, "priceTick": 10 ** -pround, "volumeTick": 10 ** -vround, "marginLevel": 10, "contractType": ct }, "schema" : ["time", "open", "high", "low", "close", "vol"], "data" : [] } listDataSequence = [] with open(filePathForCSV, "r") as f: reader = csv.reader(f) header = next(reader) headerIsNoneCount = 0 if len(header) != len(data["schema"]): Log("CSV文件格式有误,列数不同,请检查!", "#FF0000") return for ele in header: for i in range(len(data["schema"])): if data["schema"][i] == ele or ele == "": if ele == "": headerIsNoneCount += 1 if headerIsNoneCount > 1: Log("CSV文件格式有误,请检查!", "#FF0000") return listDataSequence.append(i) break while True: record = next(reader, -1) if record == -1: break index = 0 arr = [0, 0, 0, 0, 0, 0] for ele in record: arr[listDataSequence[index]] = int(ele) if listDataSequence[index] == 0 else (int(float(ele) * amountRatio) if listDataSequence[index] == 5 else int(float(ele) * priceRatio)) index += 1 data["data"].append(arr) Log("数据data.detail:", data["detail"], "响应回测系统请求。") self.wfile.write(json.dumps(data).encode()) except BaseException as e: Log("Provider do_GET error, e:", e) return def createServer(host): try: server = HTTPServer(host, Provider) Log("Starting server, listen at: %s:%s" % host) server.serve_forever() except BaseException as e: Log("createServer error, e:", e) raise Exception("stop") class KlineGenerator: def __init__(self, start_time, end_time, interval): self.start_time = dt.datetime.strptime(start_time, "%Y-%m-%d %H:%M:%S") self.end_time = dt.datetime.strptime(end_time, "%Y-%m-%d %H:%M:%S") self.interval = self._parse_interval(interval) self.timestamps = self._generate_time_series() def _parse_interval(self, interval): unit = interval[-1] value = int(interval[:-1]) if unit == "m": return value * 60 elif unit == "h": return value * 3600 elif unit == "d": return value * 86400 else: raise ValueError("不支持的K线周期,请使用 'm', 'h', 或 'd'.") def _generate_time_series(self): timestamps = [] current_time = self.start_time while current_time <= self.end_time: timestamps.append(int(current_time.timestamp() * 1000)) current_time += dt.timedelta(seconds=self.interval) return timestamps def generate(self, initPrice, trend_type="neutral", volatility=1): data = [] current_price = initPrice angle = 0 for timestamp in self.timestamps: angle_radians = math.radians(angle) cos_value = math.cos(angle_radians) if trend_type == "down": upFactor = random.uniform(0, 0.5) change = random.uniform(-0.5, 0.5 * upFactor) * volatility elif trend_type == "slow_up": downFactor = random.uniform(0, 0.5) change = random.uniform(-0.5 * downFactor, 0.5) * volatility elif trend_type == "sharp_down": upFactor = random.uniform(0, 0.5) change = random.uniform(-10, 0.5 * upFactor) * volatility elif trend_type == "sharp_up": downFactor = random.uniform(0, 0.5) change = random.uniform(-0.5 * downFactor, 10) * volatility elif trend_type == "narrow_range": change = random.uniform(-0.2, 0.2) * volatility elif trend_type == "wide_range": change = random.uniform(-3, 3) * volatility else: change = random.uniform(-0.5, 0.5) * volatility change = change + cos_value * random.uniform(-0.2, 0.2) * volatility open_price = current_price high_price = open_price + random.uniform(0, abs(change)) low_price = max(open_price - random.uniform(0, abs(change)), random.uniform(0, open_price)) close_price = random.uniform(low_price, high_price) if (high_price >= open_price and open_price >= close_price and close_price >= low_price) or (high_price >= close_price and close_price >= open_price and open_price >= low_price): pass else: Log("异常数据:", high_price, open_price, low_price, close_price, "#FF0000") high_price = max(high_price, open_price, close_price) low_price = min(low_price, open_price, close_price) base_volume = random.uniform(1000, 5000) volume = base_volume * (1 + abs(change) * 0.2) kline = { "Time": timestamp, "Open": round(open_price, 2), "High": round(high_price, 2), "Low": round(low_price, 2), "Close": round(close_price, 2), "Volume": round(volume, 2), } data.append(kline) current_price = close_price angle += 5 return data def save_to_csv(self, filename, data): with open(filename, mode="w", newline="") as csvfile: writer = csv.writer(csvfile) writer.writerow(["", "open", "high", "low", "close", "vol"]) for idx, kline in enumerate(data): writer.writerow( [kline["Time"], kline["Open"], kline["High"], kline["Low"], kline["Close"], kline["Volume"]] ) Log("当前路径:", os.getcwd()) with open("data.csv", "r") as file: lines = file.readlines() if len(lines) > 1: Log("文件写入成功,以下是文件内容的一部分:") Log("".join(lines[:5])) else: Log("文件写入失败,文件为空!") def main(): Chart({}) LogReset(1) try: # _thread.start_new_thread(createServer, (("localhost", 9090), )) _thread.start_new_thread(createServer, (("0.0.0.0", 9090), )) Log("开启自定义数据源服务线程,数据由CSV文件提供。", ", 地址/端口:0.0.0.0:9090", "#FF0000") except BaseException as e: Log("启动自定义数据源服务失败!") Log("错误信息:", e) raise Exception("stop") while True: cmd = GetCommand() if cmd: if cmd == "createRecords": Log("生成器参数:", "起始时间:", startTime, "结束时间:", endTime, "K线周期:", KLinePeriod, "初始价格:", firstPrice, "波动类型:", arrTrendType[trendType], "波动性系数:", ratio) generator = KlineGenerator( start_time=startTime, end_time=endTime, interval=KLinePeriod, ) kline_data = generator.generate(firstPrice, trend_type=arrTrendType[trendType], volatility=ratio) generator.save_to_csv("data.csv", kline_data) ext.PlotRecords(kline_data, "%s_%s" % ("records", KLinePeriod)) LogStatus(_D()) Sleep(2000)