Este artigo traz duas estratégias clássicas de transferência: Ice Mountain Engagement (comprar / vender); estratégia de transferência do inventor da plataforma de negociação quantitativa.https://www.fmz.com/square/s:冰山委托/1 。
Para mais informações, veja a Política de versão do JavaScript:
O mandato do iceberg refere-se ao fato de que os investidores, quando realizam transações em grande escala, para evitar causar um impacto excessivo no mercado, dividem automaticamente o grande pedido em vários pedidos, executam automaticamente pequenos pedidos de acordo com o preço de compra/venda mais recente atual e a estratégia de preços definida pelo cliente, e reiniciam automaticamente os pedidos quando o último pedido é totalmente transacionado ou o último preço se desvia significativamente do preço atual do pedido.
Muitas páginas de negociação são equipadas com ferramentas de comissão do iceberg, com recursos ricos, mas se você quiser personalizar algumas funções ou alterar algumas funções de acordo com suas necessidades, você precisa de uma ferramenta mais flexível. Os inventores da plataforma de negociação de quantificação resolveram bem esse problema.
import random # 导入随机数库
def CancelPendingOrders(): # CancelPendingOrders 函数作用是取消当前交易对所有挂单。
while True: # 循环检测,调用GetOrders 函数,检测当前挂单,如果orders 为空数组,即len(orders) 等于0,说明订单全部取消了,可以退出函数,调用return 退出。
orders = _C(exchange.GetOrders)
if len(orders) == 0 :
return
for j in range(len(orders)): # 遍历当前挂单数组,调用取消订单的函数CancelOrder,逐个取消挂单。
exchange.CancelOrder(orders[j]["Id"])
if j < len(orders) - 1: # 除了最后一个订单,每次都执行Sleep 让程序等待一会儿,避免撤单过于频繁。
Sleep(Interval)
LastBuyPrice = 0 # 设置一个全局变量,记录最近一次买入的价格。
InitAccount = None # 设置一个全局变量,记录初始账户资产信息。
def dispatch(): # 冰山委托逻辑的主要函数
global InitAccount, LastBuyPrice # 引用全局变量
account = None # 声明一个变量,记录实时获取的账户信息,用于对比计算。
ticker = _C(exchange.GetTicker) # 声明一个变量,记录最近行情。
LogStatus(_D(), "ticker:", ticker) # 在状态栏输出时间,最新行情
if LastBuyPrice > 0: # 当LastBuyPrice大于0时,即已经委托开始时,执行if条件内代码。
if len(_C(exchange.GetOrders)) > 0: # 调用exchange.GetOrders 函数获取当前所有挂单,判断有挂单,执行if条件内代码。
if ticker["Last"] > LastBuyPrice and ((ticker["Last"] - LastBuyPrice) / LastBuyPrice) > (2 * (EntrustDepth / 100)): # 检测偏离程度,如果触发该条件,执行if内代码,撤单。
Log("偏离过多, 最新成交价:", ticker["Last"], "委托价", LastBuyPrice)
CancelPendingOrders()
else :
return True
else : # 如果没有挂单,证明订单完全成交了。
account = _C(exchange.GetAccount) # 获取当前账户资产信息。
Log("买单完成, 累计花费:", _N(InitAccount["Balance"] - account["Balance"]), "平均买入价:", _N((InitAccount["Balance"] - account["Balance"]) / (account["Stocks"] - InitAccount["Stocks"]))) # 打印交易信息。
LastBuyPrice = 0 # 重置 LastBuyPrice为0
BuyPrice = _N(ticker["Buy"] * (1 - EntrustDepth / 100)) # 通过当前行情和参数,计算挂单价格。
if BuyPrice > MaxBuyPrice: # 判断是否超过参数设置的最大价格
return True
if not account: # 如果 account 为 null ,执行if 语句内代码,重新获取当前资产信息,复制给account
account = _C(exchange.GetAccount)
if (InitAccount["Balance"] - account["Balance"]) >= TotalBuyNet: # 判断买入所花费的总钱数,是不是超过参数设置。
return False
RandomAvgBuyOnce = (AvgBuyOnce * ((100.0 - FloatPoint) / 100.0)) + (((FloatPoint * 2) / 100.0) * AvgBuyOnce * random.random()) # 随机数 0~1
UsedMoney = min(account["Balance"], RandomAvgBuyOnce, TotalBuyNet - (InitAccount["Balance"] - account["Balance"]))
BuyAmount = _N(UsedMoney / BuyPrice) # 计算买入数量
if BuyAmount < MinStock: # 判断买入数量是否小于 参数上最小买入量限制。
return False
LastBuyPrice = BuyPrice # 记录本次下单价格,赋值给LastBuyPrice
exchange.Buy(BuyPrice, BuyAmount, "花费:¥", _N(UsedMoney), "上次成交价", ticker["Last"]) # 下单
return True
def main():
global LoopInterval, InitAccount # 引用 LoopInterval, InitAccount 全局变量
CancelPendingOrders() # 开始运行时,取消所有挂单
InitAccount = _C(exchange.GetAccount) # 初始记录 开始时的账户资产
Log(InitAccount) # 打印初始账户信息
if InitAccount["Balance"] < TotalBuyNet: # 如果初始时资产不足,则抛出错误,停止程序
raise Exception("账户余额不足")
LoopInterval = max(LoopInterval, 1) # 设置LoopInterval至少为1
while dispatch(): # 主要循环,不停调用 冰山委托逻辑函数 dispatch ,当dispatch函数 return false 时才停止循环。
Sleep(LoopInterval * 1000) # 每次循环都暂停一下,控制轮询频率。
Log("委托全部完成", _C(exchange.GetAccount)) # 当循环执行跳出时,打印当前账户资产信息。
Você pode tentar, ler o código do "Python Iceberg Encomendado - Vendo", a lógica estratégica é a mesma que a compra, com apenas uma pequena diferença.
import random
def CancelPendingOrders():
while True:
orders = _C(exchange.GetOrders)
if len(orders) == 0:
return
for j in range(len(orders)):
exchange.CancelOrder(orders[j]["Id"])
if j < len(orders) - 1:
Sleep(Interval)
LastSellPrice = 0
InitAccount = None
def dispatch():
global LastSellPrice, InitAccount
account = None
ticker = _C(exchange.GetTicker)
LogStatus(_D(), "ticker:", ticker)
if LastSellPrice > 0:
if len(_C(exchange.GetOrders)) > 0:
if ticker["Last"] < LastSellPrice and ((LastSellPrice - ticker["Last"]) / ticker["Last"]) > (2 * (EntrustDepth / 100)):
Log("偏离过多,最新成交价:", ticker["Last"], "委托价", LastSellPrice)
CancelPendingOrders()
else :
return True
else :
account = _C(exchange.GetAccount)
Log("买单完成,累计卖出:", _N(InitAccount["Stocks"] - account["Stocks"]), "平均卖出价:", _N((account["Balance"] - InitAccount["Balance"]) / (InitAccount["Stocks"] - account["Stocks"])))
LastSellPrice = 0
SellPrice = _N(ticker["Sell"] * (1 + EntrustDepth / 100))
if SellPrice < MinSellPrice:
return True
if not account:
account = _C(exchange.GetAccount)
if (InitAccount["Stocks"] - account["Stocks"]) >= TotalSellStocks:
return False
RandomAvgSellOnce = (AvgSellOnce * ((100.0 - FloatPoint) / 100.0)) + (((FloatPoint * 2) / 100.0) * AvgSellOnce * random.random())
SellAmount = min(TotalSellStocks - (InitAccount["Stocks"] - account["Stocks"]), RandomAvgSellOnce)
if SellAmount < MinStock:
return False
LastSellPrice = SellPrice
exchange.Sell(SellPrice, SellAmount, "上次成交价", ticker["Last"])
return True
def main():
global InitAccount, LoopInterval
CancelPendingOrders()
InitAccount = _C(exchange.GetAccount)
Log(InitAccount)
if InitAccount["Stocks"] < TotalSellStocks:
raise Exception("账户币数不足")
LoopInterval = max(LoopInterval, 1)
while dispatch():
Sleep(LoopInterval)
Log("委托全部完成", _C(exchange.GetAccount))
O site WexApp é uma plataforma de intercâmbio virtual que oferece uma ampla gama de serviços. Comprar
Venda
A lógica da estratégia não é complexa, e quando a estratégia é executada, depende dos parâmetros da estratégia, do preço de mercado, do pedido dinâmico, do levantamento. Quando o valor da transação / número de moedas é atingido, a estratégia é interrompida quando se aproxima do número de parâmetros definidos. O código da estratégia é muito simples e adequado para iniciantes. Os colegas interessados podem transformá-lo e projetá-lo em uma estratégia adequada ao seu próprio modo de negociação. A estratégia é de natureza pedagógica, mas deve ser usada com cuidado.
McmcOlá, por favor, pergunte-me a quantidade de compras aleatórias, qual é o significado? RandomAvgBuyOnce = (AvgBuyOnce * ((100.0 - FloatPoint) / 100.0)) + (((FloatPoint * 2) / 100.0) * AvgBuyOnce * random.random))) # Número aleatório de 0 a 1
Inventor quantificado - sonho pequenoA versão JS tem este, que foi directamente transportado.