Alguns dias atrás, descobriu-se que a saída da curva de lucro e perda do resultado do backtest de estratégia FMZ era relativamente simples, então eu pensei sobre se obteria os dados do resultado de renda e depois processá-los para obter um relatório de avaliação mais detalhado da curva de capital e exibi-lo graficamente. Quando comecei a escrever as ideias, descobri que não era tão fácil, então eu me pergunto se alguém tem as mesmas ideias e já fez as ferramentas correspondentes? Então eu pesquisei na Internet e descobri que realmente existem tais ferramentas. Eu olhei vários projetos no GitHub e finalmente escolhipyfolio
.
pyfolio
é uma biblioteca Python para desempenho de carteira financeira e análise de risco desenvolvida pela Zipline
, Alphalens
, Pyfolio
, FactSet
dados, etc.
O núcleo depyfolio
é a chamada
GitHub address: https://github.com/quantopian/pyfolio
Devido ao fato de que há poucos materiais de aprendizagem on-line para esta ferramenta, leva muito tempo para eu usá-la facilmente.
PyFolio
Referência API:
https://www.quantopian.com/docs/api-reference/pyfolio-api-reference#pyfolio-api-reference
Aqui está uma introdução mais detalhadapyfolio
A plataforma pode ser usada para backtesting de ações dos EUA. Os resultados do backtesting podem ser exibidos diretamente através depyfolio
Parece que outras funções são bastante poderosas.
A instalação depyfolio
é relativamente simples, basta seguir as instruções no GitHub.
Bem, a introdução está aqui, e começou a entrar no tópico.
Clique no botão ao lado do ecrã completo na figura acima no gráfico flutuante de lucros e perdas do resultado do backtest e, em seguida, selecione
Se você quiser ter um benchmark comparativo para os resultados da análise, você também precisa preparar dados diários de linha K do alvo de negociação. se não houver dados de linha K, apenas os dados de renda também podem ser analisados, mas haverá vários outros indicadores para os resultados da análise de dados de referência, como: Alpha, Beta, etc. O conteúdo seguinte é escrito de acordo com os dados de linha K de base.
Podemos obter dados da linha K diretamente da plataforma através do ambiente de pesquisa FMZ:
# Use the API provided by the FMZ research environment to obtain K-line data which equal to the revenue data
dfh = get_bars('bitfinex.btc_usd', '1d', start=str(startd), end=str(endd))
Depois que os dados estão preparados, podemos começar a codificação.pyfolio
, e depois ligue para ocreate_returns_tear_sheet
interface depyfolio
Para calcular e produzir o resultado.returns
, benchmark_rets=None
elive_start_date=None
três parâmetros.
Oreturn
Parâmetro requeridos dados de rendimento;benchmark_rets
são os dados do índice de referência, não são necessários;live_start_datelive_start_date
Não é necessário.
O significado deste parâmetro é:returns
Por exemplo, o nosso grupo dereturns
acima, assumindo que estamos começando mercado real após 2019-12-01, e os anteriores estão no mercado de simulação ou o resultado de um backtest, então podemos definir assim:live_start_date = '2019-12-01'
.
Se a diferença entre o interior e o exterior da amostra for grande, então há uma alta probabilidade de que isso seja sobreajuste.
Podemos implementar esta função de análise no ambiente de pesquisa FMZ, ou podemos implementá-la localmente.
https://www.fmz.com/upload/asset/1379deaa35b22ee37de23.ipynb?name=%E5%88%A9%E7%94%A8pyfolio%E5%B7%A5%E5%85%B7%E8%AF%84%E4%BB%B7%E5%9B%9E%E6%B5%8B%E8%B5%84%E9%87%91%E6%9B%B2%E7%BA%BF(%E5%8E%9F%E5%88%9B).ipynb
# First, create a new "csv to py code.py" python file locally and copy the following code to generate the py code containing the CSV file of the fund curve downloaded from FMZ. Running the newly created py file locally will generate "chart_hex.py" file.
#!/usr/bin/python
# -*- coding: UTF-8 -*-
import binascii
# The file name can be customized as needed, this example uses the default file name
filename = 'chart.csv'
with open(filename, 'rb') as f:
content = f.read()
# csv to py
wFile = open(filename.split('.')[0] + '_hex.py', "w")
wFile.write("hexstr = bytearray.fromhex('" +
bytes.decode(binascii.hexlify(content))
+ "').decode()\nwFile = open('" + filename + "', 'w')\nwFile.write(hexstr)\nwFile.close()")
wFile.close()
# Open the "chart_hex.py" file generated above, copy all the contents and replace the following code blocks, and then run the following code blocks one by one to get the chart.csv file
hexstr = bytearray.fromhex('efbbbf224461746554696d65222c22e6b5aee58aa8e79b88e4ba8f222c22e4ba8be4bbb6220a22323031392d31302d33312030303a30303a3030222c300a22323031392d31312d30312030303a30303a3030222c300a22323031392d31312d30322030303a30303a3030222c2d302e3032383434353837303635373338383930350a22323031392d31312d30332030303a30303a3030222c302e3030373431393439393432333839363936390a22323031392d31312d30342030303a30303a3030222c2d302e30323234373732373731373434313231370a22323031392d31312d30352030303a30303a3030222c2d302e30323033393930383333363836353735390a22323031392d31312d30362030303a30303a3030222c2d302e3034393935353039333230393332303435360a22323031392d31312d30372030303a30303a3030222c2d302e303434333232333634383035363033370a22323031392d31312d30382030303a30303a3030222c2d302e3032353631313934393330353935313637360a22323031392d31312d30392030303a30303a3030222c302e3032363331303433393432313739303536360a22323031392d31312d31302030303a30303a3030222c302e3033303232303332383333303436333137350a22323031392d31312d31312030303a30303a3030222c302e3033313230373133363936363633313133330a22323031392d31312d31322030303a30303a3030222c2d302e3031383533323831363136363038333135350a22323031392d31312d31332030303a30303a3030222c2d302e30313736393032353136363738333732320a22323031392d31312d31342030303a30303a3030222c2d302e3032323339313034373338373637393338360a22323031392d31312d31352030303a30303a3030222c2d302e3030383433363137313736363631333438370a22323031392d31312d31362030303a30303a3030222c302e3031373430363536343033313836383133330a22323031392d31312d31372030303a30303a3030222c302e303232393131353234343739303732330a22323031392d31312d31382030303a30303a3030222c302e3033323032363631303538383035373131340a22323031392d31312d31392030303a30303a3030222c302e303138393230323836383338373438380a22323031392d31312d32302030303a30303a3030222c302e30363632363938393337393232363738390a22323031392d31312d32312030303a30303a3030222c302e3036303835343430303337353130313033370a22323031392d31312d32322030303a30303a3030222c302e31343432363035363831333031303231330a22323031392d31312d32332030303a30303a3030222c302e32343239343037303935353332323336370a22323031392d31312d32342030303a30303a3030222c302e32313133303432303033353237373934310a22323031392d31312d32352030303a30303a3030222c302e323735363433303736313138343937380a22323031392d31312d32362030303a30303a3030222c302e323532343832323739343237363235360a22323031392d31312d32372030303a30303a3030222c302e32343931313136313839303039383437370a22323031392d31312d32382030303a30303a3030222c302e31313038373135373939323036393134310a22323031392d31312d32392030303a30303a3030222c302e313633343530313533373233393139390a22323031392d31312d33302030303a30303a3030222c302e31393838303132323332343735393737350a22323031392d31322d30312030303a30303a3030222c302e31363633373536393939313635393038350a22323031392d31322d30322030303a30303a3030222c302e32303638323732383333323337393630370a22323031392d31322d30332030303a30303a3030222c302e32303434323831303032303830393033320a22323031392d31322d30342030303a30303a3030222c302e323030353636323836353230383830360a22323031392d31322d30352030303a30303a3030222c302e31323434363439343330303739303635360a22323031392d31322d30362030303a30303a3030222c302e31303032343339383239393236303637332c302e31303032343339383239393236303637330a22323031392d31322d30372030303a30303a3030222c302e31303637313232383937343130373831360a22323031392d31322d30382030303a30303a3030222c302e31323839363336313133333032313036310a22323031392d31322d30392030303a30303a3030222c302e313337393030323234303239323136320a22323031392d31322d31302030303a30303a3030222c302e31313432333735383637323436303130350a22323031392d31322d31312030303a30303a3030222c302e31323638353037323134353130343038320a22323031392d31322d31322030303a30303a3030222c302e31343139333631313738343432333234330a22323031392d31322d31332030303a30303a3030222c302e31333838333632383537383138383536370a22323031392d31322d31342030303a30303a3030222c302e313136323031343031393435393734350a22323031392d31322d31352030303a30303a3030222c302e31363135333931303631363930313932330a22323031392d31322d31362030303a30303a3030222c302e31343937383138343836363238323231380a22323031392d31322d31372030303a30303a3030222c302e31353734393833333435363438393438320a22323031392d31322d31382030303a30303a3030222c302e32343234393031303233333139323635380a22323031392d31322d31392030303a30303a3030222c302e32313830363838353631363039303035350a22323031392d31322d32302030303a30303a3030222c302e323938383636303034333936303139340a22323031392d31322d32312030303a30303a3030222c302e33303135333036303934383834370a22323031392d31322d32322030303a30303a3030222c302e323938363835393334383634363038370a22323031392d31322d32332030303a30303a3030222c302e333039333035323733383735393130310a22323031392d31322d32342030303a30303a3030222c302e333834363231343935353136383931320a22323031392d31322d32352030303a30303a3030222c302e33343532373534363233383138313130360a22323031392d31322d32362030303a30303a3030222c302e33363235323332383833363737313035330a22323031392d31322d32372030303a30303a3030222c302e33343937363331393933333834333133360a22323031392d31322d32382030303a30303a3030222c302e33303732393733373234353434373938360a22323031392d31322d32392030303a30303a3030222c302e33323238383132323432363135363530370a22323031392d31322d33302030303a30303a3030222c302e33343134363537343239333438363535330a22323031392d31322d33312030303a30303a3030222c302e333435323733393139363237303738320a22323032302d30312d30312030303a30303a3030222c302e33353730313633323035353433343337340a22323032302d30312d30322030303a30303a3030222c302e33343937353937393034363236373934370a22323032302d30312d30332030303a30303a3030222c302e33373032333633333138303534353335370a22323032302d30312d30342030303a30303a3030222c302e33383636373137373837343037313635370a22323032302d30312d30352030303a30303a3030222c302e33383834373536373836393031343634330a22323032302d30312d30362030303a30303a3030222c302e34313331323236353139383433373731340a22323032302d30312d30372030303a30303a3030222c302e34323335323332383237303436333733350a22323032302d30312d30382030303a30303a3030222c302e34363837333531323838353035333330330a22323032302d30312d30392030303a30303a3030222c302e353436373135313832363033383332380a22323032302d30312d31302030303a30303a3030222c302e353530373037323136333937383830310a22323032302d30312d31312030303a30303a3030222c302e35353531373436393236393938310a22323032302d30312d31322030303a30303a3030222c302e353632323130363337343737323731330a22323032302d30312d31332030303a30303a3030222c302e353734373831373030393536383631370a22323032302d30312d31342030303a30303a3030222c302e353632383330303731353536353831350a22323032302d30312d31352030303a30303a3030222c302e363538323839383038313031393136380a22323032302d30312d31362030303a30303a3030222c302e363732323034393830303331333936370a22323032302d30312d31372030303a30303a3030222c302e363537313832383237323238323335380a22323032302d30312d31382030303a30303a3030222c302e363734393831383838383639373536330a22323032302d30312d31392030303a30303a3030222c302e363739373632303637393239383131330a22323032302d30312d32302030303a30303a3030222c302e363334313332373332393636313231370a22323032302d30312d32312030303a30303a3030222c302e363237353837313436323430323734370a22323032302d30312d32322030303a30303a3030222c302e363331313336373230353334393834370a22323032302d30312d32332030303a30303a3030222c302e3630313936323331393931343334360a22323032302d30312d32342030303a30303a3030222c302e363036343239313935383633313431360a22323032302d30312d32352030303a30303a3030222c302e35383130363933393531373337390a22323032302d30312d32362030303a30303a3030222c302e363133313034353130383436353937380a22323032302d30312d32372030303a30303a3030222c302e3632393938323638373737383035350a22323032302d30312d32382030303a30303a3030222c302e363831333134363734333130313533350a22323032302d30312d32392030303a30303a3030222c302e373134303533393533383834313233350a22323032302d30312d33302030303a30303a3030222c302e373433383032353331363031313135360a22323032302d30312d33312030303a30303a3030222c302e373535393639303935383539313330370a22323032302d30322d30312030303a30303a3030222c302e373533383030313630323737353438310a22323032302d30322d30322030303a30303a3030222c302e373534343434333437323732343132350a22323032302d30322d30332030303a30303a3030222c302e373435373138393532343434373738330a22323032302d30322d30342030303a30303a3030222c302e3738373636303035313130343530340a22323032302d30322d30352030303a30303a3030222c302e373935393939343930353732393834360a22323032302d30322d30362030303a30303a3030222c302e373935323037323039363636373034390a22323032302d30322d30372030303a30303a3030222c302e3832393234363232343838363336350a22323032302d30322d30382030303a30303a3030222c302e383239393034373635353939363035350a22323032302d30322d30392030303a30303a3030222c302e383338363639323137313033313436350a22323032302d30322d31302030303a30303a3030222c302e38353830313634373631380a22323032302d30322d31312030303a30303a3030222c302e383130323530393437393936313938330a22323032302d30322d31322030303a30303a3030222c302e383433323631313436333636313030320a22323032302d30322d31332030303a30303a3030222c302e383535383536353834363731333632320a22323032302d30322d31342030303a30303a3030222c302e383337323730363631383738303935360a22323032302d30322d31352030303a30303a3030222c302e383333353332343038383538303234330a22323032302d30322d31362030303a30303a3030222c302e383636383832343034353334343633320a22323032302d30322d31372030303a30303a3030222c302e383836363634323232323038333831310a22323032302d30322d31382030303a30303a3030222c302e393032363430303937303731373033390a22323032302d30322d31392030303a30303a3030222c302e383832373838333631373939333438380a22323032302d30322d32302030303a30303a3030222c302e383530303035363732363738333734320a22323032302d30322d32312030303a30303a3030222c302e3737383436363530373530313739360a22323032302d30322d32322030303a30303a3030222c302e373737383734393835393335313437350a22323032302d30322d32332030303a30303a3030222c302e373731333834393530303532383132330a22323032302d30322d32342030303a30303a3030222c302e373937383030363936353434323134340a22323032302d30322d32352030303a30303a3030222c302e373736383231373934313333363939370a22323032302d30322d32362030303a30303a3030222c302e373938353333313136353336313831310a22323032302d30322d32372030303a30303a3030222c302e383530343335363139343238353239390a22323032302d30322d32382030303a30303a3030222c302e383734333333393138383334393638310a22323032302d30322d32392030303a30303a3030222c302e3838383336363333393338343837380a22323032302d30332d30312030303a30303a3030222c302e383933393737393637343631333438380a22323032302d30332d30322030303a30303a3030222c302e3931323431323035313530303336362c302e3931323431323035313530303336360a22323032302d30332d30332030303a30303a3030222c302e383733353632323939353238363532330a22323032302d30332d30342030303a30303a3030222c302e383532353336353235333030343039310a22323032302d30332d30352030303a30303a3030222c302e383633323633313830363733313335350a22323032302d30332d30362030303a30303a3030222c302e383734303237343632353730373730350a22323032302d30332d30372030303a30303a3030222c302e383634323439323631363431353135360a22323032302d30332d30382030303a30303a3030222c302e38373630353132313331363135333031').decode()
wFile = open('chart.csv', 'w')
wFile.write(hexstr)
wFile.close()
!ls -la
cat chart.csv
# Install pyfolio library in research environment
!pip3 install --user pyfolio
import pandas as pd
import sys
sys.path.append('/home/quant/.local/lib/python3.6/site-packages')
import pyfolio as pf
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
from fmz import * # import all FMZ functions
# Read fund curve data, FMZ platform download, cumulative income data
df=pd.read_csv(filepath_or_buffer='chart.csv')
# Convert to date format
df['Date'] = pd.to_datetime(df['DateTime'],format='%Y-%m-%d %H:%M:%S')
# Get start and end time
startd = df.at[0,'Date']
endd = df.at[df.shape[0]-1,'Date']
# Read the target asset daily K-line data, and use it as the benchmark income data
# Use the API provided by the FMZ research environment to obtain K-line data equal to the revenue data
dfh = get_bars('bitfinex.btc_usd', '1d', start=str(startd), end=str(endd))
dfh=dfh[['close']]
# Calculate the daily rise and fall based on the closing price of k-line data
dfh['close_shift'] = dfh['close'].shift(1)
dfh = dfh.fillna(method='bfill') # Look down for the nearest non-null value, fill the exact position with this value, full name "backward fill"
dfh['changeval']=dfh['close']-dfh['close_shift']
dfh['change']=dfh['changeval']/dfh['close_shift']
# Frequency changes keep 6 decimal places
dfh = dfh.round({'change': 6})
# Revenue data processing, the FMZ platform obtains the cumulative revenue, and converts it to the daily revenue change rate
df['return_shift'] = df['Floating Profit and Loss'].shift(1)
df['dayly']=df['Floating P&L']-df['return_shift']
chushizichan = 3 # Initial asset value in FMZ backtest
df['returns'] = df['dayly']/(df['return_shift']+chushizichan)
df=df[['Date','Floating Profit and Loss','return_shift','dayly','returns']]
df = df.fillna(value=0.0)
df = df.round({'dayly': 3}) # retain three decimal places
df = df.round({'returns': 6})
# Convert pd.DataFrame to pd.Series required for pyfolio earnings
df['Date'] = pd.to_datetime(df['Date'])
df=df[['Date','returns']]
df.set_index('Date', inplace=True)
# Processed revenue data
returns = df['returns'].tz_localize('UTC')
# Convert pd.DataFrame to pd.Series required for pyfolio benchmark returns
dfh=dfh[['change']]
dfh = pd.Series(dfh['change'].values, index=dfh.index)
# Processed benchmark data
benchmark_rets = dfh
# The point in time when real-time trading begins after the strategy's backtest period.
live_start_date = '2020-02-01'
# Call pyfolio's API to calculate and output the fund curve analysis result graph
# "returns" Parameters are required, the remaining parameters can not be entered
pf.create_returns_tear_sheet(returns,benchmark_rets=benchmark_rets,live_start_date=live_start_date)
Resultado da análise de saída:
Há muitos dados de saída, precisamos nos acalmar e aprender o que esses indicadores significam. Deixe-me apresentar alguns deles. Depois de encontrar a introdução aos indicadores relevantes e entender o significado dos indicadores, podemos interpretar nosso estado de estratégia de negociação.
A taxa de retorno anualizada é calculada convertendo a taxa de retorno atual (taxa de retorno diária, taxa de retorno semanal, taxa de retorno mensal, etc.) em taxa de retorno anual. É uma taxa teórica de retorno, não uma taxa de retorno que foi realmente alcançada. A taxa de retorno anualizada precisa ser distinguida da taxa de retorno anual. A taxa de retorno anual refere-se à taxa de retorno para um ano de execução da estratégia e é a taxa de retorno real.
O conceito mais fácil de entender é o retorno da estratégia, que é a taxa de mudança nos ativos totais do início ao fim da estratégia. Volatilidade anual A taxa de volatilidade anualizada é utilizada para medir o risco de volatilidade do objectivo de investimento.
Descreve o excesso de rendimento que a estratégia pode obter no âmbito do risco unitário total.
Descrever a maior perda da estratégia.
Outro indicador de desempenho risco-recompensa. Sua maior vantagem sobre a taxa de Sharpe é - por construção - considera todos os momentos estatísticos, enquanto a taxa de Sharpe considera apenas os dois primeiros momentos.
Descreve o excesso de rendimento que a estratégia pode obter sob o risco de queda da unidade.
Valor Diário em Risco - Outro indicador de risco muito popular. Neste caso, significa que, em 95% dos casos, a posição (portefólio) é mantida por mais um dia e a perda não excederá 1,8%.
Selecione o 95o e 5o quantilos para a distribuição do retorno diário e, em seguida, divida para obter o valor absoluto.
Isso é chamado estabilidade. na verdade, é muito simples, ou seja, o quanto o incremento de tempo explica o valor líquido acumulado, ou seja, o r-quadrado da regressão.
Referência:https://blog.csdn.net/qtlyx/article/details/88724236
Espera-se que a FMZ possa aumentar a função de avaliação da curva de capital rico e aumentar a função de armazenamento dos resultados históricos do backtest, para que possa exibir os resultados do backtest de forma mais conveniente e profissional, e ajudá-lo a criar melhores estratégias.