Esta estratégia combina os sinais de compra e venda dos indicadores TMO e AMA da LuxAlgo
O indicador TMO reflete o impulso dos preços. Ele pertence ao tipo de indicador de oscilador e pode gerar sinais de negociação quando ocorre uma divergência. O indicador AMA é uma média móvel suavizada. Ele mostra uma gama de flutuações de preços, indicando condições de sobrecompra / sobrevenda quando o preço se aproxima da faixa superior / inferior.
A principal lógica por trás desta estratégia é: a TMO pode detectar a divergência de tendência para gerar sinais de negociação. A AMA pode identificar zonas de reversão de preço. Junto com a confirmação do aumento do tamanho do corpo da vela, eles podem melhorar a precisão de capturar o início da tendência. Portanto, a estratégia será longa / curta quando:
O problema do sinal falso de indicadores únicos é resolvido.
As vantagens desta estratégia incluem:
A combinação de indicadores melhora a precisão do sinal. TMO e AMA se validam mutuamente para reduzir falsos sinais e melhorar a precisão.
A combinação de sinal TMO, extremidades AMA e aumento do tamanho da vela permite que a estratégia identifique efetivamente o início da tendência, que as estratégias de scalping perseguem.
Usando barras recentes
Com apenas dois indicadores, a estratégia implementou um sistema completo de scalping com lógica clara e simples.
Os principais riscos da estratégia:
Como uma estratégia de scalping que visa um curto período de detenção, o alto custo de negociação pode afetar a sua rentabilidade.
Risco agressivo de stop loss. Ao usar os preços extremos recentes para stop loss, pode ser vulnerável ao ruído do mercado e aumentar a chance de acionar o stop loss.
Risco de otimização de parâmetros difícil. A estratégia envolve vários parâmetros. Encontrar a combinação ideal de parâmetros pode ser desafiador.
A estratégia pode ser ainda melhorada nos seguintes domínios:
Adicionar mais indicadores de filtro como volume para remover sinais falsos e melhorar ainda mais a qualidade do sinal.
As alterações de teste nas regras de stop loss para torná-las menos agressivas, por exemplo, adicionar barras de confirmação antes de desencadear o stop loss.
Realizar otimização de parâmetros para encontrar a melhor combinação de parâmetros para os indicadores, o que pode ajudar a filtrar mais ruído e aumentar a taxa de vitória.
Testar e negociar em directo em diferentes produtos e prazos para descobrir a melhor condição de mercado para esta lógica estratégica.
Esta estratégia combina os sinais de negociação de TMO e AMA para o couro cabeludo em mercados de gama, capturando os movimentos iniciais da tendência.
/*backtest start: 2023-11-23 00:00:00 end: 2023-11-30 00:00:00 period: 10m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © Kaspricci //@version=5 strategy("TradeIQ - Crazy Scalping Trading Strategy [Kaspricci]", overlay=true, initial_capital = 1000, currency = currency.USD) headlineTMO = "TMO Settings" tmoLength = input.int(7, "TMO Length", minval = 1, group = headlineTMO) tmoSource = input.source(close, "TMO Source", group = headlineTMO) // calculate values osc = ta.mom(ta.sma(ta.sma(tmoSource, tmoLength), tmoLength), tmoLength) // determine color of historgram oscColor = osc > osc[1] and osc > 0 ? #00c42b : osc < osc[1] and osc > 0 ? #4ee567 : osc < osc[1] and osc < 0 ? #ff441f : osc > osc[1] and osc < 0 ? #c03920 : na // plot histogram //plot(osc, "OSC", oscColor, linewidth = 3, style = plot.style_histogram) // conditon to find highs and lows up = ta.highest(tmoSource, tmoLength) dn = ta.lowest(tmoSource, tmoLength) // define conditions to be used for finding divergence phosc = ta.crossunder(ta.change(osc), 0) plosc = ta.crossover (ta.change(osc), 0) // test for divergence bear = osc > 0 and phosc and ta.valuewhen(phosc,osc,0) < ta.valuewhen(phosc,osc,1) and ta.valuewhen(phosc,up,0) > ta.valuewhen(phosc,up,1) ? 1 : 0 bull = osc < 0 and plosc and ta.valuewhen(plosc,osc,0) > ta.valuewhen(plosc,osc,1) and ta.valuewhen(plosc,dn,0) < ta.valuewhen(plosc,dn,1) ? 1 : 0 // ------------------------------------------------------------------------------------------------------------- headlineAMA = "AMA Settings" amaSource = input.source(defval = close, title = "AMA Source", group = headlineAMA) amaLength = input.int(defval = 50, title = "AMA Length", minval = 2, group = headlineAMA) amaMulti = input.float(defval = 2.0, title = "Factor", minval = 1) amaShowCd = input(defval = true , title = "As Smoothed Candles") amaShowEx = input(defval = true, title = "Show Alternating Extremities") amaAlpha = input.float(1.0, "Lag", minval=0, step=.1, tooltip='Control the lag of the moving average (higher = more lag)', group= 'AMA Kernel Parameters') amaBeta = input.float(0.5, "Overshoot", minval=0, step=.1, tooltip='Control the overshoot amplitude of the moving average (higher = overshoots with an higher amplitude)', group='AMA Kernel Parameters') // ------------------------------------------------------------------------------------------------------------- headlineSL = "Stop Loss Settings" slLength = input.int(defval = 10, title = "SL Period", minval = 1, group = headlineSL, tooltip = "Number of bars for swing high / low") // ------------------------------------------------------------------------------------------------------------- var b = array.new_float(0) var float x = na if barstate.isfirst for i = 0 to amaLength - 1 x := i / (amaLength - 1) w = math.sin(2 * 3.14159 * math.pow(x, amaAlpha)) * (1 - math.pow(x, amaBeta)) array.push(b, w) // local function to filter the source filter(series float x) => sum = 0. for i = 0 to amaLength - 1 sum := sum + x[i] * array.get(b,i) sum / array.sum(b) // apply filter function on source series srcFiltered = filter(amaSource) deviation = ta.sma(math.abs(amaSource - srcFiltered), amaLength) * amaMulti upper = srcFiltered + deviation lower = srcFiltered - deviation //---- crossHigh = ta.cross(high, upper) crossLow = ta.cross(low, lower) var os = 0 os := crossHigh ? 1 : crossLow ? 0 : os[1] ext = os * upper + (1 - os) * lower //---- os_css = ta.rsi(srcFiltered, amaLength) / 100 extColor = os == 1 ? #30FF85 : #ff1100 plot(srcFiltered, "MA", amaShowCd ? na : color.black, 2, editable = false) plot(amaShowEx ? ext : na, "Extremities", ta.change(os) ? na : extColor, 2, editable=false) // handle smoothed candles var float h = na var float l = na var float c = na var float body = na if amaShowCd h := filter(high) l := filter(low) c := filter(amaSource) body := math.abs(math.avg(c[1], c[2]) - c) ohlc_os = ta.rsi(c, amaLength) / 100 plotcandle(math.avg(c[1], c[2]), h, l, c, "Smooth Candles", #434651, bordercolor = na, editable = false, display = amaShowCd ? display.all : display.none) // ------------------------------------------------------------------------------------------------------------- plotshape(bull ? ext : na, "Bullish Circle", shape.circle, location.absolute, color = #00c42b, size=size.tiny) plotshape(bear ? ext : na, "Bearish Circle", shape.circle, location.absolute, color = #ff441f, size=size.tiny) plotshape(bull ? ext : na, "Bullish Label", shape.labeldown, location.absolute, color = #00c42b, text="Buy", textcolor=color.white, size=size.tiny) plotshape(bear ? ext : na, "Bearish Label", shape.labelup, location.absolute, color = #ff441f, text="Sell", textcolor=color.white, size=size.tiny) // ------------------------------------------------------------------------------------------------------------- candleSizeIncreasing = body[2] < body[1] and body[1] < body[0] longEntryCond = os == 1 and bull shortEntryCond = os == 0 and bear longEntry = strategy.opentrades == 0 and candleSizeIncreasing and not candleSizeIncreasing[1] and ta.barssince(longEntryCond) < ta.barssince(os == 0) and ta.barssince(longEntryCond) < ta.barssince(bear) shortEntry = strategy.opentrades == 0 and candleSizeIncreasing and not candleSizeIncreasing[1] and ta.barssince(shortEntryCond) < ta.barssince(os == 1) and ta.barssince(shortEntryCond) < ta.barssince(bull) longExit = strategy.opentrades > 0 and strategy.position_size > 0 and (bear or os == 0) shortExit = strategy.opentrades > 0 and strategy.position_size < 0 and (bull or os == 1) recentSwingHigh = ta.highest(high, slLength) // highest high of last candles recentSwingLow = ta.lowest(low, slLength) // lowest low of recent candles bgcolor(longEntry ? color.rgb(76, 175, 79, 90) : na) bgcolor(shortEntry ? color.rgb(255, 82, 82, 90) : na) slLong = (close - recentSwingLow) / syminfo.mintick // stop loss in ticks slShort = (recentSwingHigh - close) / syminfo.mintick // stop loss in ticks newOrderID = str.tostring(strategy.closedtrades + strategy.opentrades + 1) curOrderID = str.tostring(strategy.closedtrades + strategy.opentrades) alertMessageForEntry = "Trade {0} - New {1} Entry at price: {2} with stop loss at: {3}" if (longEntry) alertMessage = str.format(alertMessageForEntry, newOrderID, "Long", close, recentSwingLow) strategy.entry(newOrderID, strategy.long, alert_message = alertMessage) strategy.exit("Stop Loss Long", newOrderID, loss = slLong, alert_message = "Stop Loss for Trade " + newOrderID) if(longExit) strategy.close(curOrderID, alert_message = "Close Trade " + curOrderID) if (shortEntry) alertMessage = str.format(alertMessageForEntry, newOrderID, "Short", close, recentSwingLow) strategy.entry(newOrderID, strategy.short, alert_message = alertMessage) strategy.exit("Stop Loss Short", newOrderID, loss = slShort, alert_message = "Stop Loss for Trade " + newOrderID) if(shortExit) strategy.close(curOrderID, alert_message = "Close Trade " + curOrderID)