В прошлом FMZ официально выпустила стратегию устойчивой сетки, которая была довольно популярна среди пользователей, и обзорная площадка торговли TRX получила немало прибыли за последний год при более контролируемом риске. 1. Необходимо установить параметры, такие как первоначальная цена, интервал сетки, стоимость сетки, многопространственный режим. 2. устойчивая сетевая стратегия с высоким риском взрыва, а с относительно низким риском взрыва, даже если сетевая стоимость установлена небольшой, влияние на цену взрыва не является большим. 3. Непрерывные контрактные сетки могут быть выбранными только для того, чтобы избежать риска пустоты.
Например, если вы хотите, чтобы ваш бизнес был более конкурентоспособным, вы можете использовать эту стратегию для того, чтобы выиграть деньги.https://www.fmz.com/digest-topic/5930; балансовая стратегия всегда держит фиксированную пропорцию стоимости или позиции стоимости, продает немного, когда падает, покупает, и может работать с простыми настройками. Даже если цена валюты сильно подорожает, то не рискует обвалиться. Проблема балансовой стратегии наличности заключается в низком использовании капитала, нет простых способов увеличения рычага.
Для новичков, очень рекомендуется балансировать стратегию, операционная проста, нужно только установить параметр пропорциональности или стоимости хранения, можно без мозгов работать, не беспокоясь о том, что цены постоянно растут. У некоторых опытных есть возможность выбрать сетевую стратегию, самостоятельно определить колеблющийся верхний и нижний лимит и сумму средств в разрезе, повысить использование средств, чтобы получить максимальную отдачу.
Для облегчения повторного тестирования большего количества транзакционных пар, эта документация покажет полный процесс повторного тестирования, который пользователи могут самостоятельно настроить для различных параметров и транзакционных пар в качестве контраста.
import requests
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests, zipfile, io
%matplotlib inline
## 当前交易对
Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo')
symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))-
set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT']
print(symbols)
['FLMUSDT', 'ICPUSDT', 'CHZUSDT', 'APEUSDT', 'DARUSDT', 'TLMUSDT', 'ETHUSDT', 'STMXUSDT', 'ENJUSDT', 'LINKUSDT', 'OGNUSDT', 'RSRUSDT', 'QTUMUSDT', 'UNIUSDT', 'BNBUSDT', 'XLMUSDT', 'ATOMUSDT', 'LPTUSDT', 'UNFIUSDT', 'DASHUSDT', 'BTCUSDT', 'NEOUSDT', 'AAVEUSDT', 'DUSKUSDT', 'XRPUSDT', 'IOTXUSDT', 'CVCUSDT', 'SANDUSDT', 'XTZUSDT', 'IOTAUSDT', 'BELUSDT', 'MANAUSDT', 'IOSTUSDT', 'IMXUSDT', 'THETAUSDT', 'SCUSDT', 'DOGEUSDT', 'CELOUSDT', 'BNXUSDT', 'SNXUSDT', 'ZRXUSDT', 'HBARUSDT', 'DOTUSDT', 'ANKRUSDT', 'CELRUSDT', 'BAKEUSDT', 'GALUSDT', 'ICXUSDT', 'LRCUSDT', 'AVAXUSDT', 'C98USDT', 'MTLUSDT', 'FTTUSDT', 'MASKUSDT', 'RLCUSDT', 'MATICUSDT', 'COMPUSDT', 'BLZUSDT', 'CRVUSDT', 'ZECUSDT', 'RUNEUSDT', 'LITUSDT', 'ONEUSDT', 'ADAUSDT', 'NKNUSDT', 'LTCUSDT', 'ATAUSDT', 'GALAUSDT', 'BALUSDT', 'ROSEUSDT', 'EOSUSDT', 'YFIUSDT', 'SKLUSDT', 'BANDUSDT', 'ALGOUSDT', 'NEARUSDT', 'AXSUSDT', 'KSMUSDT', 'AUDIOUSDT', 'SRMUSDT', 'HNTUSDT', 'MKRUSDT', 'KLAYUSDT', 'FLOWUSDT', 'STORJUSDT', 'BCHUSDT', 'DYDXUSDT', 'ARUSDT', 'GMTUSDT', 'CHRUSDT', 'API3USDT', 'VETUSDT', 'KAVAUSDT', 'WAVESUSDT', 'EGLDUSDT', 'SFPUSDT', 'RENUSDT', 'SUSHIUSDT', 'SOLUSDT', 'RVNUSDT', 'ONTUSDT', 'BTSUSDT', 'ZILUSDT', 'GTCUSDT', 'ZENUSDT', 'ALICEUSDT', 'ETCUSDT', 'TRXUSDT', 'TOMOUSDT', 'FILUSDT', 'ARPAUSDT', 'CTKUSDT', 'BATUSDT', 'SXPUSDT', '1INCHUSDT', 'HOTUSDT', 'WOOUSDT', 'LINAUSDT', 'REEFUSDT', 'GRTUSDT', 'RAYUSDT', 'COTIUSDT', 'XMRUSDT', 'PEOPLEUSDT', 'OCEANUSDT', 'JASMYUSDT', 'TRBUSDT', 'ANTUSDT', 'XEMUSDT', 'DGBUSDT', 'ENSUSDT', 'OMGUSDT', 'ALPHAUSDT', 'FTMUSDT', 'DENTUSDT', 'KNCUSDT', 'CTSIUSDT', 'SHIBUSDT', 'XECUSDT']
#获取任意周期K线的函数
def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'):
Klines = []
start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000
end_time = min(int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000,time.time()*1000)
intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000}
while start_time < end_time:
mid_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time)
#print(url)
res = requests.get(url)
res_list = res.json()
if type(res_list) == list and len(res_list) > 0:
start_time = res_list[-1][0]+int(period[:-1])*intervel_map[period[-1]]
Klines += res_list
if type(res_list) == list and len(res_list) == 0:
start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
if mid_time >= end_time:
break
df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float')
df.index = pd.to_datetime(df.time,unit='ms')
return df
Загрузив цены закрытия всех торговых пар с 2021 года по настоящее время, мы можем наблюдать общие изменения в индексе рынка: с 2021 по 2022 год это, несомненно, рынок быков, когда индекс поднялся в 14 раз, можно сказать, что золото, и многие монеты поднялись в сотни раз. Однако в 2022 году открылся рынок медведей, который длится уже полгода, когда индекс упал в 80 раз, и несколько десятков монет отошли более чем на 90%. Такой взрыв отражает огромный риск стратегии сетки.
В настоящее время индекс находится на уровне около 3, что на 200% выше, чем в начале 2021 года, что, учитывая развитие рынка, должно быть относительно низким уровнем.
Например, в январе 2016 года в Китае появилась новая валюта, которая стала самым дорогим в мире.
Например, в Китае, в частности, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае, в Китае.
Одновременно с тем, как и в других странах, в США, в США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США, США
#下载所有交易对的收盘价
start_date = '2021-1-1'
end_date = '2022-05-30'
period = '1d'
df_all = pd.DataFrame(index=pd.date_range(start=start_date, end=end_date, freq=period),columns=symbols)
for i in range(len(symbols)):
#print(symbols[i])
symbol = symbols[i]
df_s = GetKlines(symbol=symbol,start=start_date,end=end_date,period=period,base='api',v='v3')
df_all[symbol] = df_s[~df_s.index.duplicated(keep='first')].close
#指数变化
df_norm = df_all/df_all.fillna(method='bfill').iloc[0] #归一化
df_norm.mean(axis=1).plot(figsize=(15,6),grid=True);
#比年初的最高涨幅
max_up = df_all.max()/df_all.fillna(method='bfill').iloc[0]
print(max_up.map(lambda x:round(x,3)).sort_values().to_dict())
{'JASMYUSDT': 1.0, 'ICPUSDT': 1.0, 'LINAUSDT': 1.0, 'WOOUSDT': 1.0, 'GALUSDT': 1.0, 'PEOPLEUSDT': 1.0, 'XECUSDT': 1.026, 'ENSUSDT': 1.032, 'TLMUSDT': 1.039, 'IMXUSDT': 1.099, 'FLOWUSDT': 1.155, 'ATAUSDT': 1.216, 'DARUSDT': 1.261, 'ALICEUSDT': 1.312, 'BNXUSDT': 1.522, 'API3USDT': 1.732, 'GTCUSDT': 1.833, 'KLAYUSDT': 1.891, 'BAKEUSDT': 1.892, 'DYDXUSDT': 2.062, 'SHIBUSDT': 2.281, 'BTCUSDT': 2.302, 'MASKUSDT': 2.396, 'SFPUSDT': 2.74, 'LPTUSDT': 2.75, 'APEUSDT': 2.783, 'ARUSDT': 2.928, 'CELOUSDT': 2.951, 'ZILUSDT': 2.999, 'LTCUSDT': 3.072, 'SNXUSDT': 3.266, 'XEMUSDT': 3.555, 'XMRUSDT': 3.564, 'YFIUSDT': 3.794, 'BANDUSDT': 3.812, 'RAYUSDT': 3.924, 'REEFUSDT': 4.184, 'ANTUSDT': 4.205, 'XTZUSDT': 4.339, 'CTKUSDT': 4.352, 'LITUSDT': 4.38, 'RSRUSDT': 4.407, 'LINKUSDT': 4.412, 'BCHUSDT': 4.527, 'DASHUSDT': 5.037, 'BALUSDT': 5.172, 'OCEANUSDT': 5.277, 'EOSUSDT': 5.503, 'RENUSDT': 5.538, 'XLMUSDT': 5.563, 'TOMOUSDT': 5.567, 'ZECUSDT': 5.654, 'COMPUSDT': 5.87, 'DGBUSDT': 5.948, 'ALGOUSDT': 5.981, 'ONTUSDT': 5.997, 'BELUSDT': 6.101, 'TRXUSDT': 6.116, 'ZRXUSDT': 6.135, 'GRTUSDT': 6.45, '1INCHUSDT': 6.479, 'DOTUSDT': 6.502, 'ETHUSDT': 6.596, 'KAVAUSDT': 6.687, 'ICXUSDT': 6.74, 'SUSHIUSDT': 6.848, 'AAVEUSDT': 6.931, 'BTSUSDT': 6.961, 'KNCUSDT': 6.966, 'C98USDT': 7.091, 'THETAUSDT': 7.222, 'ATOMUSDT': 7.553, 'OMGUSDT': 7.556, 'SXPUSDT': 7.681, 'UNFIUSDT': 7.696, 'XRPUSDT': 7.726, 'TRBUSDT': 8.241, 'BLZUSDT': 8.434, 'NEOUSDT': 8.491, 'FLMUSDT': 8.506, 'KSMUSDT': 8.571, 'FILUSDT': 8.591, 'IOTAUSDT': 8.616, 'BATUSDT': 8.647, 'ARPAUSDT': 9.055, 'UNIUSDT': 9.104, 'WAVESUSDT': 9.106, 'MKRUSDT': 10.294, 'CRVUSDT': 10.513, 'STORJUSDT': 10.674, 'SKLUSDT': 11.009, 'CVCUSDT': 11.026, 'SRMUSDT': 11.031, 'QTUMUSDT': 12.066, 'ALPHAUSDT': 12.103, 'ZENUSDT': 12.631, 'VETUSDT': 13.296, 'ROSEUSDT': 13.429, 'FTTUSDT': 13.705, 'IOSTUSDT': 13.786, 'COTIUSDT': 13.958, 'NEARUSDT': 14.855, 'HBARUSDT': 15.312, 'RLCUSDT': 15.432, 'SCUSDT': 15.6, 'GALAUSDT': 15.722, 'RUNEUSDT': 15.795, 'ADAUSDT': 16.94, 'MTLUSDT': 17.18, 'BNBUSDT': 17.899, 'RVNUSDT': 18.169, 'EGLDUSDT': 18.879, 'LRCUSDT': 19.499, 'ANKRUSDT': 21.398, 'ETCUSDT': 23.51, 'DUSKUSDT': 23.55, 'AUDIOUSDT': 25.306, 'OGNUSDT': 25.524, 'GMTUSDT': 28.83, 'ENJUSDT': 33.073, 'STMXUSDT': 33.18, 'IOTXUSDT': 35.866, 'AVAXUSDT': 36.946, 'CHZUSDT': 37.128, 'CELRUSDT': 37.273, 'HNTUSDT': 38.779, 'CTSIUSDT': 41.108, 'HOTUSDT': 46.466, 'CHRUSDT': 61.091, 'MANAUSDT': 62.143, 'NKNUSDT': 70.636, 'ONEUSDT': 84.132, 'DENTUSDT': 99.973, 'DOGEUSDT': 121.447, 'SOLUSDT': 140.296, 'MATICUSDT': 161.846, 'FTMUSDT': 192.507, 'SANDUSDT': 203.219, 'AXSUSDT': 270.41}
#当前最大回测
draw_down = df_all.iloc[-1]/df_all.max()
print(draw_down.map(lambda x:round(x,3)).sort_values().to_dict())
{'ICPUSDT': 0.022, 'FILUSDT': 0.043, 'BAKEUSDT': 0.046, 'TLMUSDT': 0.05, 'LITUSDT': 0.053, 'LINAUSDT': 0.054, 'JASMYUSDT': 0.056, 'ALPHAUSDT': 0.062, 'RAYUSDT': 0.062, 'GRTUSDT': 0.067, 'DENTUSDT': 0.068, 'RSRUSDT': 0.068, 'XEMUSDT': 0.068, 'UNFIUSDT': 0.072, 'DYDXUSDT': 0.074, 'SUSHIUSDT': 0.074, 'OGNUSDT': 0.074, 'COMPUSDT': 0.074, 'NKNUSDT': 0.078, 'SKLUSDT': 0.08, 'DGBUSDT': 0.081, 'RLCUSDT': 0.085, 'REEFUSDT': 0.086, 'BANDUSDT': 0.086, 'HOTUSDT': 0.092, 'SRMUSDT': 0.092, 'RENUSDT': 0.092, 'BTSUSDT': 0.093, 'THETAUSDT': 0.094, 'FLMUSDT': 0.094, 'EOSUSDT': 0.095, 'TRBUSDT': 0.095, 'SXPUSDT': 0.095, 'ATAUSDT': 0.096, 'NEOUSDT': 0.096, 'FLOWUSDT': 0.097, 'YFIUSDT': 0.101, 'BALUSDT': 0.106, 'MASKUSDT': 0.106, 'ONTUSDT': 0.108, 'CELRUSDT': 0.108, 'AUDIOUSDT': 0.108, 'SCUSDT': 0.11, 'GALAUSDT': 0.113, 'GTCUSDT': 0.117, 'CTSIUSDT': 0.117, 'STMXUSDT': 0.118, 'DARUSDT': 0.118, 'ALICEUSDT': 0.119, 'SNXUSDT': 0.124, 'FTMUSDT': 0.126, 'BCHUSDT': 0.127, 'SFPUSDT': 0.127, 'ROSEUSDT': 0.128, 'DOGEUSDT': 0.128, 'RVNUSDT': 0.129, 'OCEANUSDT': 0.129, 'VETUSDT': 0.13, 'KSMUSDT': 0.131, 'ICXUSDT': 0.131, 'UNIUSDT': 0.131, 'ONEUSDT': 0.131, '1INCHUSDT': 0.134, 'IOTAUSDT': 0.139, 'C98USDT': 0.139, 'WAVESUSDT': 0.14, 'DUSKUSDT': 0.141, 'LINKUSDT': 0.143, 'DASHUSDT': 0.143, 'OMGUSDT': 0.143, 'PEOPLEUSDT': 0.143, 'AXSUSDT': 0.15, 'ENJUSDT': 0.15, 'QTUMUSDT': 0.152, 'SHIBUSDT': 0.154, 'ZENUSDT': 0.154, 'BLZUSDT': 0.154, 'ANTUSDT': 0.155, 'XECUSDT': 0.155, 'CHZUSDT': 0.158, 'RUNEUSDT': 0.163, 'ENSUSDT': 0.165, 'LRCUSDT': 0.167, 'CHRUSDT': 0.168, 'IOTXUSDT': 0.174, 'TOMOUSDT': 0.176, 'ALGOUSDT': 0.177, 'EGLDUSDT': 0.177, 'ARUSDT': 0.178, 'LTCUSDT': 0.178, 'HNTUSDT': 0.18, 'LPTUSDT': 0.181, 'SOLUSDT': 0.183, 'ARPAUSDT': 0.184, 'BELUSDT': 0.184, 'ETCUSDT': 0.186, 'ZRXUSDT': 0.187, 'AAVEUSDT': 0.187, 'CVCUSDT': 0.188, 'STORJUSDT': 0.189, 'COTIUSDT': 0.19, 'CELOUSDT': 0.191, 'SANDUSDT': 0.191, 'ADAUSDT': 0.192, 'HBARUSDT': 0.194, 'DOTUSDT': 0.195, 'XLMUSDT': 0.195, 'AVAXUSDT': 0.206, 'ANKRUSDT': 0.207, 'MTLUSDT': 0.208, 'MANAUSDT': 0.209, 'CRVUSDT': 0.213, 'API3USDT': 0.221, 'IOSTUSDT': 0.227, 'XRPUSDT': 0.228, 'BATUSDT': 0.228, 'MKRUSDT': 0.229, 'MATICUSDT': 0.229, 'CTKUSDT': 0.233, 'ZILUSDT': 0.233, 'WOOUSDT': 0.234, 'ATOMUSDT': 0.237, 'KLAYUSDT': 0.239, 'XTZUSDT': 0.245, 'IMXUSDT': 0.278, 'NEARUSDT': 0.285, 'GALUSDT': 0.299, 'APEUSDT': 0.305, 'ZECUSDT': 0.309, 'KAVAUSDT': 0.31, 'GMTUSDT': 0.327, 'FTTUSDT': 0.366, 'KNCUSDT': 0.401, 'ETHUSDT': 0.416, 'XMRUSDT': 0.422, 'BTCUSDT': 0.47, 'BNBUSDT': 0.476, 'TRXUSDT': 0.507, 'BNXUSDT': 0.64}
Сначала мы смоделируем следующее падение с помощью самого простого кода и посмотрим на цены взрывных позиций с различными значениями держания. Поскольку стратегия всегда держит несколько позиций, рост без риска. Начальный капитал составляет 1000, цена монеты - 1, корректировка соотношения - 0.01. Результат таков. Видно, что риск сделать несколько взрывных позиций также не низок, при 1,5 раз большем рычаге можно противостоять падению на 50%. При текущих относительных нижних условиях риск является приемлемым.
Стоимость хранения | Сделайте взрывную цену |
---|---|
300 | 0.035 |
500 | 0.133 |
800 | 0.285 |
1000 | 0.362 |
1500 | 0.51 |
2000 | 0.599 |
3000 | 0.711 |
5000 | 0.81 |
10000 | 0.904 |
for Hold_value in [300,500,800,1000,1500,2000,3000,5000,10000]:
amount = Hold_value/1
hold_price = 1
margin = 1000
Pct = 0.01
i = 0
while margin > 0:
i += 1
if i>500:
break
buy_price = (1-Pct)*Hold_value/amount
buy_amount = Hold_value*Pct/buy_price
hold_price = (amount * hold_price + buy_amount * buy_price) / (buy_amount + amount)
amount += buy_amount
margin = 1000 + amount * (buy_price - hold_price)
print(Hold_value, round(buy_price,3))
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
#还是用原来的回测引擎
class Exchange:
def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000):
self.initial_balance = initial_balance #初始的资产
self.fee = fee
self.trade_symbols = trade_symbols
self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}}
for symbol in trade_symbols:
self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0}
def Trade(self, symbol, direction, price, amount):
cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
open_amount = amount - cover_amount
self.account['USDT']['realised_profit'] -= price*amount*self.fee #扣除手续费
self.account['USDT']['fee'] += price*amount*self.fee
self.account[symbol]['fee'] += price*amount*self.fee
if cover_amount > 0: #先平仓
self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount #利润
self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
self.account[symbol]['amount'] -= -direction*cover_amount
self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
if open_amount > 0:
total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
total_amount = direction*self.account[symbol]['amount']+open_amount
self.account[symbol]['hold_price'] = total_cost/total_amount
self.account[symbol]['amount'] += direction*open_amount
def Buy(self, symbol, price, amount):
self.Trade(symbol, 1, price, amount)
def Sell(self, symbol, price, amount):
self.Trade(symbol, -1, price, amount)
def Update(self, close_price): #对资产进行更新
self.account['USDT']['unrealised_profit'] = 0
for symbol in self.trade_symbols:
self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
self.account[symbol]['price'] = close_price[symbol]
self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
В первую очередь мы проверим, как TRX отстаивает свою стратегию, и максимальное отклонение TRX в этом раунде медвежьего рынка будет относительно небольшим, поэтому есть некоторые особенности.
Начальная цена TRX составила 0.02676U, максимальная цена достигла 0.18U, в настоящее время около 0.08U, что очень сильно колеблется. Если вначале использовать стратегию сетки с большим количеством пустоты, то не избежать результатов бомбардировки.
Оценка окончательной прибыли 4524U, уже близкая к прибыли TRX на момент 0.18, с более чем двукратным отклонением от начала до более низкого отклонения от 0.4, а также с меньшей вероятностью взрыва, в течение которого может быть возможность увеличить стоимость хранения. Но прибыль ниже 2000U всегда неподвижна. Это также один из недостатков балансирующей стратегии.
symbol = 'TRXUSDT'
df_trx = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_trx.close.plot(figsize=(15,6),grid=True);
#TRX平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_trx.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_trx.itertuples():
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.low < buy_price:
e.Buy(symbol,buy_price,pct*hold_value/buy_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.high > sell_price:
e.Sell(symbol,sell_price,pct*hold_value/sell_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx.index = pd.to_datetime(res_trx.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4524.226998288555 91.0
#收益
res_trx.profit.plot(figsize=(15,6),grid=True);
#实际占用杠杆
(res_trx.value/(res_trx.profit+1000)).plot(figsize=(15,6),grid=True);
Если мы посмотрим еще раз на WAVES, то эта монета была особенной, она поднялась с начального максимума 6U до 60U, а затем опять упала в районе 8U. В конечном итоге она получила 4945 долларов, что намного больше, чем удержание монеты.
symbol = 'WAVESUSDT'
df_waves = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_waves.close.plot(figsize=(15,6),grid=True);
#TWAVES平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_waves.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_waves.itertuples():
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.low < buy_price:
e.Buy(symbol,buy_price,pct*hold_value/buy_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
while row.high > sell_price:
e.Sell(symbol,sell_price,pct*hold_value/sell_price)
e.Update({symbol:row.close})
buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves.index = pd.to_datetime(res_waves.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4945.149323437233 178.0
df_waves.profit.plot(figsize=(15,6),grid=True);
Кстати, проанализировав эффективность стратегии сетки, интервал сетки составляет 0.01, а сетка имеет значение 10. В случае почти 10-кратного роста, WAVES и TRX имеют огромные отклонения, в которых WAVES отклонение 5000U, TRX также превышает 3000U, и если первоначальный капитал меньше, то они в основном взрываются.
#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_waves.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_waves.itertuples():
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount'])
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
while row.low < buy_price:
e.Buy(symbol,buy_price,value/buy_price)
e.Update({symbol:row.close})
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) #买单价格,由于是挂单成交,也是最终的撮合价格=
while row.high > sell_price:
e.Sell(symbol,sell_price,value/sell_price)
e.Update({symbol:row.close})
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves_net.index = pd.to_datetime(res_waves_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 1678.0516101975015 70.0
res_waves_net.profit.plot(figsize=(15,6),grid=True);
#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price = df_trx.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_trx.itertuples():
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount'])
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
while row.low < buy_price:
e.Buy(symbol,buy_price,value/buy_price)
e.Update({symbol:row.close})
buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount'])
while row.high > sell_price:
e.Sell(symbol,sell_price,value/sell_price)
e.Update({symbol:row.close})
sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
if int(row.time)%(60*60*1000) == 0:
e.Update({symbol:row.close})
res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx_net.index = pd.to_datetime(res_trx_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 -161.06952570521656 37.0
res_trx_net.profit.plot(figsize=(15,6),grid=True);
В данном ретро-анализе используется линия 5minK, промежуточные колебания не полностью смоделированы, поэтому фактическая прибыль должна быть немного выше. В целом, балансовая стратегия несет относительно небольшой риск, не боится штормов, не нуждается в корректировке параметров, более удобна в использовании, подходит для новичков. В этой битве будет бесплатно использоваться стратегия устойчивого баланса, и вы можете попробовать её.
77924998Но, как вы думаете, стоит ли использовать эту стратегию, если она не работает?
Восемь цифр для мечты.Как я присоединился к вашей битве за тысячи и как я использовал эту тактику?
18539809925Где же стратегия войны банковских контингентов?
Джонни.Если криптовалютный рынок будет находиться в состоянии медвежьего рынка в условиях роста доллара, то в ближайшие полгода ли такие криптовалюты, как TRX и ETH, будут продолжать получать более высокие доходы от сетевых операций?
ДжекмаНедостатком данной статьи является невозможность подсчета средств, в случае длительного их хранения, затраты оказывают огромное влияние! Корова обычно имеет положительные затраты, т.е. владелец большого количества акций будет платить, и платить много! а медвежий рынок наоборот.
ДжекмаОжесточенный
девангКаждая стратегия эффективна в конкретном сценарии, балансовая стратегия - это стратегия обратного тренда, при которой удерживание неподвижной валюты равносильно стратегии сбалансированного тренда, при котором капитал не накапливается без повышения рыночной цены.