Стратегия двунаправленной движущейся средней реверсии является количественной торговой стратегией, построенной на теории реверсии цены.
Основная идея этой стратегии - реверсия средней цены, которая предполагает, что цены имеют тенденцию колебаться вокруг среднего значения и имеют более высокие шансы на возвращение, когда они слишком сильно отклоняются от среднего. В частности, эта стратегия устанавливает три группы скользящих средних: скользящие средние вхождения, скользящие средние выхода и скользящие средние остановки. Она откроет соответствующие длинные или короткие позиции, когда цены достигают скользящих средних вхождения; закрывает позиции, когда цены достигают скользящих средних выхода; и контролирует потери с скользящими средними остановками в случае, если цены продолжают тенденцию, не возвращаясь назад.
С точки зрения логики кода, существуют две входные скользящие средние - длинные и короткие - состоящие соответственно из быстрых и медленных скользящих средних. Отклонение между ними и ценой определяет размер позиции. Кроме того, выходной скользящий средний - это отдельная скользящая средняя, которая сигнализирует, когда закрыть позиции. Когда цены достигают этой линии, существующие позиции будут сровнены.
К основным преимуществам стратегии реверсии двойной скользящей средней можно отнести:
Эта стратегия хорошо работает с инструментами с низкой волатильностью, которые имеют относительно небольшие колебания цен, особенно при вхождении в циклы с ограниченным диапазоном. Она может эффективно использовать возможности временных переворотов цен. Между тем, меры контроля риска достаточно всеобъемлющие, ограничивая потери в разумных пределах, даже если цены не возвращаются обратно.
Существуют также некоторые риски, связанные с этой стратегией:
Некоторые способы смягчения вышеуказанных рисков включают:
Кроме того, есть много возможностей для дальнейшей оптимизации этой стратегии:
Двунаправленная стратегия реверсии скользящей средней имеет целью извлечь выгоду из изменения цен после значительных отклонений от уровня скользящей средней. При соблюдении надлежащих мер контроля риска она может достигать стабильной прибыли за счет настройки параметров. Хотя риски, такие как преследование тенденций и чрезмерная волатильность, все еще существуют, их можно решить путем улучшения логики входа, сокращения размеров позиций и многого другого. Эта простая в понимании стратегия заслуживает дальнейших исследований и оптимизации со стороны количественных трейдеров.
/*backtest start: 2023-12-15 00:00:00 end: 2024-01-14 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy(title = "hamster-bot MRS 2", overlay = true, default_qty_type = strategy.percent_of_equity, initial_capital = 100, default_qty_value = 30, pyramiding = 1, commission_value = 0.1, backtest_fill_limits_assumption = 1) info_options = "Options" on_close = input(false, title = "Entry on close", inline=info_options, group=info_options) OFFS = input.int(0, minval = 0, maxval = 1, title = "| Offset View", inline=info_options, group=info_options) trade_offset = input.int(0, minval = 0, maxval = 1, title = "Trade", inline=info_options, group=info_options) use_kalman_filter = input.bool(false, title="Use Kalman filter", group=info_options) //MA Opening info_opening = "MA Opening Long" maopeningtyp_l = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening, group=info_opening) maopeningsrc_l = input.source(ohlc4, title = "", inline=info_opening, group=info_opening) maopeninglen_l = input.int(3, minval = 1, title = "", inline=info_opening, group=info_opening) long1on = input(true, title = "", inline = "long1") long1shift = input.float(0.96, step = 0.005, title = "Long", inline = "long1") long1lot = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "long1") info_opening_s = "MA Opening Short" maopeningtyp_s = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_opening_s, group=info_opening_s) maopeningsrc_s = input.source(ohlc4, title = "", inline=info_opening_s, group=info_opening_s) maopeninglen_s = input.int(3, minval = 1, title = "", inline=info_opening_s, group=info_opening_s) short1on = input(true, title = "", inline = "short1") short1shift = input.float(1.04, step = 0.005, title = "short", inline = "short1") short1lot = input.int(10, minval = 0, maxval = 10000, step = 10, title = "Lot 1", inline = "short1") //MA Closing info_closing = "MA Closing" maclosingtyp = input.string("SMA", title="Type", options=["SMA", "EMA", "TEMA", "DEMA", "ZLEMA", "WMA", "Hma", "Thma", "Ehma", "H", "L", "DMA"], title = "", inline=info_closing, group=info_closing) maclosingsrc = input.source(ohlc4, title = "", inline=info_closing, group=info_closing) maclosinglen = input.int(3, minval = 1, maxval = 200, title = "", inline=info_closing, group=info_closing) maclosingmul = input.float(1, step = 0.005, title = "mul", inline=info_closing, group=info_closing) startTime = input(timestamp("01 Jan 2010 00:00 +0000"), "Start date", inline = "period") finalTime = input(timestamp("31 Dec 2030 23:59 +0000"), "Final date", inline = "period") HMA(_src, _length) => ta.wma(2 * ta.wma(_src, _length / 2) - ta.wma(_src, _length), math.round(math.sqrt(_length))) EHMA(_src, _length) => ta.ema(2 * ta.ema(_src, _length / 2) - ta.ema(_src, _length), math.round(math.sqrt(_length))) THMA(_src, _length) => ta.wma(ta.wma(_src,_length / 3) * 3 - ta.wma(_src, _length / 2) - ta.wma(_src, _length), _length) tema(sec, length)=> tema1= ta.ema(sec, length) tema2= ta.ema(tema1, length) tema3= ta.ema(tema2, length) tema_r = 3*tema1-3*tema2+tema3 donchian(len) => math.avg(ta.lowest(len), ta.highest(len)) ATR_func(_src, _len)=> atrLow = low - ta.atr(_len) trailAtrLow = atrLow trailAtrLow := na(trailAtrLow[1]) ? trailAtrLow : atrLow >= trailAtrLow[1] ? atrLow : trailAtrLow[1] supportHit = _src <= trailAtrLow trailAtrLow := supportHit ? atrLow : trailAtrLow trailAtrLow f_dema(src, len)=> EMA1 = ta.ema(src, len) EMA2 = ta.ema(EMA1, len) DEMA = (2*EMA1)-EMA2 f_zlema(src, period) => lag = math.round((period - 1) / 2) ema_data = src + (src - src[lag]) zl= ta.ema(ema_data, period) f_kalman_filter(src) => float value1= na float value2 = na value1 := 0.2 * (src - src[1]) + 0.8 * nz(value1[1]) value2 := 0.1 * (ta.tr) + 0.8 * nz(value2[1]) lambda = math.abs(value1 / value2) alpha = (-math.pow(lambda, 2) + math.sqrt(math.pow(lambda, 4) + 16 * math.pow(lambda, 2)))/8 value3 = float(na) value3 := alpha * src + (1 - alpha) * nz(value3[1]) //SWITCH ma_func(modeSwitch, src, len, use_k_f=true) => modeSwitch == "SMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.sma(src, len)) : ta.sma(src, len) : modeSwitch == "RMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.rma(src, len)) : ta.rma(src, len) : modeSwitch == "EMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.ema(src, len)) : ta.ema(src, len) : modeSwitch == "TEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(tema(src, len)) : tema(src, len): modeSwitch == "DEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_dema(src, len)) : f_dema(src, len): modeSwitch == "ZLEMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(f_zlema(src, len)) : f_zlema(src, len): modeSwitch == "WMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.wma(src, len)) : ta.wma(src, len): modeSwitch == "VWMA" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.vwma(src, len)) : ta.vwma(src, len): modeSwitch == "Hma" ? use_kalman_filter and use_k_f ? f_kalman_filter(HMA(src, len)) : HMA(src, len): modeSwitch == "Ehma" ? use_kalman_filter and use_k_f ? f_kalman_filter(EHMA(src, len)) : EHMA(src, len): modeSwitch == "Thma" ? use_kalman_filter and use_k_f ? f_kalman_filter(THMA(src, len/2)) : THMA(src, len/2): modeSwitch == "ATR" ? use_kalman_filter and use_k_f ? f_kalman_filter(ATR_func(src, len)): ATR_func(src, len) : modeSwitch == "L" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.lowest(len)): ta.lowest(len) : modeSwitch == "H" ? use_kalman_filter and use_k_f ? f_kalman_filter(ta.highest(len)): ta.highest(len) : modeSwitch == "DMA" ? donchian(len) : na //Var sum = 0.0 maopening_l = 0.0 maopening_s = 0.0 maclosing = 0.0 pos = strategy.position_size p = 0.0 p := pos == 0 ? (strategy.equity / 100) / close : p[1] truetime = true loss = 0.0 maxloss = 0.0 equity = 0.0 //MA Opening maopening_l := ma_func(maopeningtyp_l, maopeningsrc_l, maopeninglen_l) maopening_s := ma_func(maopeningtyp_s, maopeningsrc_s, maopeninglen_s) //MA Closing maclosing := ma_func(maclosingtyp, maclosingsrc, maclosinglen) * maclosingmul long1 = long1on == false ? 0 : long1shift == 0 ? 0 : long1lot == 0 ? 0 : maopening_l == 0 ? 0 : maopening_l * long1shift short1 = short1on == false ? 0 : short1shift == 0 ? 0 : short1lot == 0 ? 0 : maopening_s == 0 ? 0 : maopening_s * short1shift //Colors long1col = long1 == 0 ? na : color.green short1col = short1 == 0 ? na : color.red //Lines // plot(maopening_l, offset = OFFS, color = color.new(color.green, 50)) // plot(maopening_s, offset = OFFS, color = color.new(color.red, 50)) plot(maclosing, offset = OFFS, color = color.fuchsia) long1line = long1 == 0 ? close : long1 short1line = short1 == 0 ? close : short1 plot(long1line, offset = OFFS, color = long1col) plot(short1line, offset = OFFS, color = short1col) //Lots lotlong1 = p * long1lot lotshort1 = p * short1lot //Entry if truetime //Long sum := 0 strategy.entry("L", strategy.long, lotlong1, limit = on_close ? na : long1, when = long1 > 0 and pos <= sum and (on_close ? close <= long1[trade_offset] : true)) sum := lotlong1 //Short sum := 0 pos := -1 * pos strategy.entry("S", strategy.short, lotshort1, limit = on_close ? na : short1, when = short1 > 0 and pos <= sum and (on_close ? close >= short1[trade_offset] : true)) sum := lotshort1 strategy.exit("Exit", na, limit = maclosing) if time > finalTime strategy.close_all()