В процессе загрузки ресурсов... загрузка...

Динамическая многопоказательная количественная стратегия торговли

Автор:Чао Чжан, Дата: 2024-02-04 14:42:05
Тэги:

img

Обзор

Эта стратегия использует комбинацию сигналов нескольких технических индикаторов для динамической торговли базовыми активами, такими как акции и криптовалюты.

Принципы

Эта стратегия в основном использует скользящие средние, индекс относительной силы (RSI), средний истинный диапазон (ATR) и индекс направленного движения (ADX) для генерации торговых сигналов.

В частности, для формирования сигналов сначала используются двойные перекрестки скользящих средних. Быстрая линия имеет длину 10 дней, а медленная линия - 50 дней. Золотые перекрестки (быстрая линия, переходящая над медленной линией снизу) генерируют сигналы покупки, а мертвые перекрестки генерируют сигналы продажи. Эта система может эффективно идентифицировать обратные тенденции в долгосрочной перспективе.

В дополнение к двойным MAs, RSI вводится для подтверждения сигналов тренда и избежания ложных прорывов. RSI оценивает силу рынка по дивергенции между быстрой и медленной линией. Когда RSI превышает 30, генерируется сигнал покупки. Когда он превышает 70, генерируется сигнал продажи.

Кроме того, ATR используется для автоматической корректировки уровня стоп-лосса. ATR может эффективно отражать волатильность рынков.

Наконец, ADX измеряет силу тренда. ADX использует дивергенцию между положительным индикатором DI + и отрицательным индикатором DI- для измерения силы тренда. Только когда ADX превышает 20, тенденция считается установленной и генерируются фактические торговые сигналы.

Сочетая сигналы из нескольких индикаторов, стратегия может быть более осторожной при отправке торговых сигналов, избегая помех от ложных сигналов и, следовательно, достигая более высокого уровня выигрыша.

Преимущества

Преимущества этой стратегии включают:

  1. Сочетание нескольких показателей повышает точность принятия решений

Комбинация MA, RSI, ATR, ADX и других может повысить точность и избежать ошибочных суждений из-за одного индикатора.

  1. Риски автоматического регулирования стоп-лосса

Корректировка стоп-лосса на основе волатильности рынка может снизить вероятность остановки и эффективно управлять рисками.

  1. Суждение о силе тренда избегает торговли против трендов

Оценивая силу тренда с помощью ADX до фактической торговли, можно уменьшить убытки от торговли против трендов.

  1. Большое пространство настройки параметров

Параметры, такие как длины MA, длина RSI, период ATR и период ADX, могут быть скорректированы и оптимизированы для разных рынков.

  1. Защита долгосрочной прибыли

Выявление долгосрочных тенденций с использованием системы быстрого и медленного MA и уменьшение краткосрочного шума с помощью таких индикаторов, как RSI, позволяет долгосрочно держать тенденции для получения более высокой прибыли.

Риски и решения

Существует также несколько рисков, связанных с этой стратегией:

  1. Трудность оптимизации параметров

Больше параметров означает большую сложность в оптимизации. Неподходящие наборы параметров могут ухудшить эффективность стратегии. Более адекватный бэкстестинг и настройка параметров могут уменьшить этот риск.

  1. Риск отказа индикатора

Все технические индикаторы имеют применимые состояния рынка. Когда рынки входят в своеобразные состояния, используемые индикаторы могут не работать одновременно. Риски от таких событий BLACK SWAN требуют внимания.

  1. Неограниченный риск убытков от коротких позиций

Стратегия позволяет торговать короткими позициями. короткие позиции по своей сути имеют риск неограниченных потерь. Это может быть уменьшено путем установки правильного стоп-лосса.

  1. Риск изменения тенденции

Индикаторы не могут быстро реагировать на изменения. Неправильные направленные позиции часто приводят к потерям во время изменений. Сокращение параметров некоторых индикаторов может улучшить чувствительность.

Оптимизация

Есть возможности для дальнейшей оптимизации:

  1. Адаптивное взвешивание показателей

Проанализировать корреляции между показателями и состоянием рынка и разработать механизмы для динамической корректировки весов показателей на основе меняющихся рыночных условий для улучшения решений.

  1. Увеличение с помощью глубокого обучения

Использование моделей глубокого обучения для прогнозирования направлений движения цен и расширения основанной на правилах системы для повышения точности.

  1. Настройка адаптивных параметров

Проектирование адаптивных модулей настройки параметров показателей на основе исторических данных скользящего окна, чтобы стратегия могла лучше адаптироваться.

  1. Включить анализ переменного периода

Интегрировать анализ переменного периода, как теория волн Эллиота, чтобы помочь судить о среднесрочных и долгосрочных тенденциях и улучшить рентабельность.

Заключение

В целом, эта стратегия объединяет MA, RSI, ATR, ADX и многое другое в относительно комплексную систему, которая может идентифицировать долгосрочные тенденции через систему MA и уменьшить помехи шума с краткосрочными индикаторами, такими как RSI. Кроме того, существует большое пространство для оптимизации для улучшения производительности. Стратегия улучшает решения путем объединения индикаторов и контроля рисков. Она заслуживает дальнейших исследований и применения.


/*backtest
start: 2023-01-28 00:00:00
end: 2024-02-03 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code to my testing
// © sgb

//@version=5


strategy(title='Soren test 2', overlay=true, initial_capital=100, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.percent_of_equity, default_qty_value=50, commission_value=0.04)

//SOURCE =============================================================================================================================================================================================================================================================================================================

src = input(open)

// INPUTS ============================================================================================================================================================================================================================================================================================================



//ADX --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ADX_options = input.string('MASANAKAMURA', title='Adx Type', options=['CLASSIC', 'MASANAKAMURA'], group='ADX')
ADX_len = input.int(38, title='Adx lenght', minval=1, group='ADX')
th = input.float(23, title='Adx Treshold', minval=0, step=0.5, group='ADX')

// Volume ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

volume_f = input.float(1.2, title='Volume mult.', minval=0, step=0.1, group='Volume')
sma_length = input.int(35, title='Volume lenght', minval=1, group='Volume')

//RSI----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

len_3 = input.int(25, title='RSI lenght', group='Relative Strenght Indeks')
src_3 = input.source(low, title='RSI Source', group='Relative Strenght Indeks')
RSI_VWAP_length = input(25, title='Rsi vwap lenght')

// Range Filter ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

per_ = input.int(26, title='SAMPLING PERIOD', minval=1, group='Range Filter')
mult = input.float(2.3, title='RANGE MULTIPLIER', minval=0.1, step=0.1, group='Range Filter')

// Cloud --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

len = input.int(1, title='Cloud Length', group='Cloud')

//RMI ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RMI_len = input.int(26, title='Rmi Lenght', minval=1, group='Relative Momentum Index')
mom = input.int(17, title='Rmi Momentum', minval=1, group='Relative Momentum Index')
RMI_os = input.int(33, title='Rmi oversold', minval=0, group='Relative Momentum Index')
RMI_ob = input.int(68, title='Rmi overbought', minval=0, group='Relative Momentum Index')


// Indicators Calculations ========================================================================================================================================================================================================================================================================================================

// Range Filter ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

var bool L_RF = na
var bool S_RF = na

Range_filter(_src, _per_, _mult) =>
    var float _upward = 0.0
    var float _downward = 0.0
    wper = _per_ * 2 - 1
    avrng = ta.ema(math.abs(_src - _src[1]), _per_)
    _smoothrng = ta.ema(avrng, wper) * _mult
    _filt = _src
    _filt := _src > nz(_filt[1]) ? _src - _smoothrng < nz(_filt[1]) ? nz(_filt[1]) : _src - _smoothrng : _src + _smoothrng > nz(_filt[1]) ? nz(_filt[1]) : _src + _smoothrng
    _upward := _filt > _filt[1] ? nz(_upward[1]) + 1 : _filt < _filt[1] ? 0 : nz(_upward[1])
    _downward := _filt < _filt[1] ? nz(_downward[1]) + 1 : _filt > _filt[1] ? 0 : nz(_downward[1])
    [_smoothrng, _filt, _upward, _downward]
[smoothrng, filt, upward, downward] = Range_filter(src, per_, mult)
hband = filt + smoothrng
lband = filt - smoothrng
L_RF := high > hband and upward > 0
S_RF := low < lband and downward > 0

//ADX-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

calcADX(_len) =>
    up = ta.change(high)
    down = -ta.change(low)
    plusDM = na(up) ? na : up > down and up > 0 ? up : 0
    minusDM = na(down) ? na : down > up and down > 0 ? down : 0
    truerange = ta.rma(ta.tr, _len)
    _plus = fixnan(100 * ta.rma(plusDM, _len) / truerange)
    _minus = fixnan(100 * ta.rma(minusDM, _len) / truerange)
    sum = _plus + _minus
    _adx = 100 * ta.rma(math.abs(_plus - _minus) / (sum == 0 ? 1 : sum), _len)
    [_plus, _minus, _adx]
calcADX_Masanakamura(_len) =>
    SmoothedTrueRange = 0.0
    SmoothedDirectionalMovementPlus = 0.0
    SmoothedDirectionalMovementMinus = 0.0
    TrueRange = math.max(math.max(high - low, math.abs(high - nz(close[1]))), math.abs(low - nz(close[1])))
    DirectionalMovementPlus = high - nz(high[1]) > nz(low[1]) - low ? math.max(high - nz(high[1]), 0) : 0
    DirectionalMovementMinus = nz(low[1]) - low > high - nz(high[1]) ? math.max(nz(low[1]) - low, 0) : 0
    SmoothedTrueRange := nz(SmoothedTrueRange[1]) - nz(SmoothedTrueRange[1]) / _len + TrueRange
    SmoothedDirectionalMovementPlus := nz(SmoothedDirectionalMovementPlus[1]) - nz(SmoothedDirectionalMovementPlus[1]) / _len + DirectionalMovementPlus
    SmoothedDirectionalMovementMinus := nz(SmoothedDirectionalMovementMinus[1]) - nz(SmoothedDirectionalMovementMinus[1]) / _len + DirectionalMovementMinus
    DIP = SmoothedDirectionalMovementPlus / SmoothedTrueRange * 100
    DIM = SmoothedDirectionalMovementMinus / SmoothedTrueRange * 100
    DX = math.abs(DIP - DIM) / (DIP + DIM) * 100
    adx = ta.sma(DX, _len)
    [DIP, DIM, adx]
[DIPlusC, DIMinusC, ADXC] = calcADX(ADX_len)
[DIPlusM, DIMinusM, ADXM] = calcADX_Masanakamura(ADX_len)

DIPlus = ADX_options == 'CLASSIC' ? DIPlusC : DIPlusM
DIMinus = ADX_options == 'CLASSIC' ? DIMinusC : DIMinusM
ADX = ADX_options == 'CLASSIC' ? ADXC : ADXM
L_adx = DIPlus > DIMinus and ADX > th
S_adx = DIPlus < DIMinus and ADX > th

// Volume -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Volume_condt = volume > ta.sma(volume, sma_length) * volume_f

//RSI------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

up_3 = ta.rma(math.max(ta.change(src_3), 0), len_3)
down_3 = ta.rma(-math.min(ta.change(src_3), 0), len_3)
rsi_3 = down_3 == 0 ? 100 : up_3 == 0 ? 0 : 100 - 100 / (1 + up_3 / down_3)
L_rsi = rsi_3 < 70
S_rsi = rsi_3 > 30
RSI_VWAP = ta.rsi(ta.vwap(close), RSI_VWAP_length)
RSI_VWAP_overSold = 13
RSI_VWAP_overBought = 68

L_VAP = ta.crossover(RSI_VWAP, RSI_VWAP_overSold)
S_VAP = ta.crossunder(RSI_VWAP, RSI_VWAP_overBought)

//Cloud --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

PI = 2 * math.asin(1)
hilbertTransform(src) =>
    0.0962 * src + 0.5769 * nz(src[2]) - 0.5769 * nz(src[4]) - 0.0962 * nz(src[6])
computeComponent(src, mesaPeriodMult) =>
    hilbertTransform(src) * mesaPeriodMult
computeAlpha(src, fastLimit, slowLimit) =>
    mesaPeriod = 0.0
    mesaPeriodMult = 0.075 * nz(mesaPeriod[1]) + 0.54
    smooth = 0.0
    smooth := (4 * src + 3 * nz(src[1]) + 2 * nz(src[2]) + nz(src[3])) / 10
    detrender = 0.0
    detrender := computeComponent(smooth, mesaPeriodMult)
    I1 = nz(detrender[3])
    Q1 = computeComponent(detrender, mesaPeriodMult)
    jI = computeComponent(I1, mesaPeriodMult)
    jQ = computeComponent(Q1, mesaPeriodMult)
    I2 = 0.0
    Q2 = 0.0
    I2 := I1 - jQ
    Q2 := Q1 + jI
    I2 := 0.2 * I2 + 0.8 * nz(I2[1])
    Q2 := 0.2 * Q2 + 0.8 * nz(Q2[1])
    Re = I2 * nz(I2[1]) + Q2 * nz(Q2[1])
    Im = I2 * nz(Q2[1]) - Q2 * nz(I2[1])
    Re := 0.2 * Re + 0.8 * nz(Re[1])
    Im := 0.2 * Im + 0.8 * nz(Im[1])
    if Re != 0 and Im != 0
        mesaPeriod := 2 * PI / math.atan(Im / Re)
        mesaPeriod
    if mesaPeriod > 1.5 * nz(mesaPeriod[1])
        mesaPeriod := 1.5 * nz(mesaPeriod[1])
        mesaPeriod
    if mesaPeriod < 0.67 * nz(mesaPeriod[1])
        mesaPeriod := 0.67 * nz(mesaPeriod[1])
        mesaPeriod
    if mesaPeriod < 6
        mesaPeriod := 6
        mesaPeriod
    if mesaPeriod > 50
        mesaPeriod := 50
        mesaPeriod
    mesaPeriod := 0.2 * mesaPeriod + 0.8 * nz(mesaPeriod[1])
    phase = 0.0
    if I1 != 0
        phase := 180 / PI * math.atan(Q1 / I1)
        phase
    deltaPhase = nz(phase[1]) - phase
    if deltaPhase < 1
        deltaPhase := 1
        deltaPhase
    alpha = fastLimit / deltaPhase
    if alpha < slowLimit
        alpha := slowLimit
        alpha
    [alpha, alpha / 2.0]
er = math.abs(ta.change(src, len)) / math.sum(math.abs(ta.change(src)), len)
[a, b] = computeAlpha(src, er, er * 0.1)
mama = 0.0
mama := a * src + (1 - a) * nz(mama[1])
fama = 0.0
fama := b * mama + (1 - b) * nz(fama[1])
alpha = math.pow(er * (b - a) + a, 2)
kama = 0.0
kama := alpha * src + (1 - alpha) * nz(kama[1])

L_cloud = kama > kama[1]
S_cloud = kama < kama[1]

// RMI -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

RMI(len, m) =>
    up = ta.ema(math.max(close - close[m], 0), len)
    dn = ta.ema(math.max(close[m] - close, 0), len)
    RMI = dn == 0 ? 0 : 100 - 100 / (1 + up / dn)
    RMI
L_rmi = ta.crossover(RMI(RMI_len, mom), RMI_os)
S_rmi = ta.crossunder(RMI(RMI_len, mom), RMI_ob)



//STRATEGY ==========================================================================================================================================================================================================================================================================================================

L_1 = L_VAP and L_RF and not S_adx
S_1 = S_VAP and S_RF and not L_adx
L_2 = L_adx and Volume_condt and L_rsi and L_cloud
S_2 = S_adx and Volume_condt and S_rsi and S_cloud
L_3 = L_rmi and L_RF and not S_adx
S_3 = S_rmi and S_RF and not L_adx
L_basic_condt = L_1 or L_2 or L_3
S_basic_condt = S_1 or S_2 or S_3

var bool longCondition = na
var bool shortCondition = na
var float last_open_longCondition = na
var float last_open_shortCondition = na
var int last_longCondition = 0
var int last_shortCondition = 0
longCondition := L_basic_condt
shortCondition := S_basic_condt
last_open_longCondition := longCondition ? close : nz(last_open_longCondition[1])
last_open_shortCondition := shortCondition ? close : nz(last_open_shortCondition[1])
last_longCondition := longCondition ? time : nz(last_longCondition[1])
last_shortCondition := shortCondition ? time : nz(last_shortCondition[1])
in_longCondition = last_longCondition > last_shortCondition
in_shortCondition = last_shortCondition > last_longCondition

// SWAP-SL ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

var int last_long_sl = na
var int last_short_sl = na
sl = input.float(2, 'Swap % period', minval=0, step=0.1, group='strategy settings')
long_sl = ta.crossunder(low, (1 - sl / 100) * last_open_longCondition) and in_longCondition and not longCondition
short_sl = ta.crossover(high, (1 + sl / 100) * last_open_shortCondition) and in_shortCondition and not shortCondition
last_long_sl := long_sl ? time : nz(last_long_sl[1])
last_short_sl := short_sl ? time : nz(last_short_sl[1])
var bool CondIni_long_sl = 0
CondIni_long_sl := long_sl ? 1 : longCondition ? -1 : nz(CondIni_long_sl[1])
var bool CondIni_short_sl = 0
CondIni_short_sl := short_sl ? 1 : shortCondition ? -1 : nz(CondIni_short_sl[1])
Final_Long_sl = long_sl and nz(CondIni_long_sl[1]) == -1 and in_longCondition and not longCondition
Final_Short_sl = short_sl and nz(CondIni_short_sl[1]) == -1 and in_shortCondition and not shortCondition
var int sectionLongs = 0
sectionLongs := nz(sectionLongs[1])
var int sectionShorts = 0
sectionShorts := nz(sectionShorts[1])

// RE-ENTRY ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

if longCondition or Final_Long_sl
    sectionLongs += 1
    sectionShorts := 0
    sectionShorts
if shortCondition or Final_Short_sl
    sectionLongs := 0
    sectionShorts += 1
    sectionShorts
var float sum_long = 0.0
var float sum_short = 0.0

if longCondition
    sum_long := nz(last_open_longCondition) + nz(sum_long[1])
    sum_short := 0.0
    sum_short
if Final_Long_sl
    sum_long := (1 - sl / 100) * last_open_longCondition + nz(sum_long[1])
    sum_short := 0.0
    sum_short
if shortCondition
    sum_short := nz(last_open_shortCondition) + nz(sum_short[1])
    sum_long := 0.0
    sum_long
if Final_Short_sl
    sum_long := 0.0
    sum_short := (1 + sl / 100) * last_open_shortCondition + nz(sum_short[1])
    sum_short

var float Position_Price = 0.0
Position_Price := nz(Position_Price[1])
Position_Price := longCondition or Final_Long_sl ? sum_long / sectionLongs : shortCondition or Final_Short_sl ? sum_short / sectionShorts : na

//TP_1 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

tp = input.float(1.2, 'Tp-1 ', minval=0, step=0.1, group='strategy settings')
long_tp = ta.crossover(high, (1 + tp / 100) * fixnan(Position_Price)) and in_longCondition and not longCondition
short_tp = ta.crossunder(low, (1 - tp / 100) * fixnan(Position_Price)) and in_shortCondition and not shortCondition
var int last_long_tp = na
var int last_short_tp = na
last_long_tp := long_tp ? time : nz(last_long_tp[1])
last_short_tp := short_tp ? time : nz(last_short_tp[1])
Final_Long_tp = long_tp and last_longCondition > nz(last_long_tp[1])
Final_Short_tp = short_tp and last_shortCondition > nz(last_short_tp[1])
fixnan_1 = fixnan(Position_Price)
ltp = Final_Long_tp ? fixnan_1 * (1 + tp / 100) : na
fixnan_2 = fixnan(Position_Price)
stp = Final_Short_tp ? fixnan_2 * (1 - tp / 100) : na
if Final_Short_tp or Final_Long_tp
    sum_long := 0.0
    sum_short := 0.0
    sectionLongs := 0
    sectionShorts := 0
    sectionShorts
if Final_Long_tp
    CondIni_long_sl == 1
if Final_Short_tp
    CondIni_short_sl == 1


// COLORS & PLOTS --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ADX_COLOR = L_adx ? color.lime : S_adx ? color.red : color.orange
barcolor(color=ADX_COLOR)
hbandplot = plot(hband, title='RF HT', color=ADX_COLOR, transp=50)
lbandplot = plot(lband, title='RF LT', color=ADX_COLOR, transp=50)
fill(hbandplot, lbandplot, title='RF TR', color=ADX_COLOR, transp=90)
plotshape(longCondition, title='Long', style=shape.triangleup, location=location.belowbar, color=color.new(color.blue, 0), size=size.tiny)
plotshape(shortCondition, title='Short', style=shape.triangledown, location=location.abovebar, color=color.new(color.red, 0), size=size.tiny)

plot(ltp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false)
plot(stp, style=plot.style_circles, linewidth=5, color=color.new(color.fuchsia, 0), editable=false)

//BACKTESTING--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


Q = 50
SL = input.float(0.4, 'StopLoss ', minval=0, step=0.1)

strategy.entry('long', strategy.long, when=longCondition)
strategy.entry('short', strategy.short, when=shortCondition)

strategy.exit('TP', 'long', qty_percent=Q, limit=fixnan(Position_Price) * (1 + tp / 100))
strategy.exit('TP', 'short', qty_percent=Q, limit=fixnan(Position_Price) * (1 - tp / 100))


strategy.exit('SL', 'long', stop=fixnan(Position_Price) * (1 - SL / 100))
strategy.exit('SL', 'short', stop=fixnan(Position_Price) * (1 + SL / 100))


//
//
//
//
//
//

// By SGB







Больше