Tài nguyên đang được tải lên... tải...

Chiến lược cân bằng bền vững phù hợp với thị trường gấu

Tác giả:Cỏ nhỏ, Tạo: 2022-06-02 10:00:04, Cập nhật: 2024-12-02 21:36:36

img

Trong quá khứ, FMZ chính thức công bố một chiến lược lưới vĩnh cửu, được người dùng yêu thích và thị trường TRX đã thu được rất nhiều lợi nhuận trong vòng một năm qua với nhiều rủi ro kiểm soát được.

  1. Cần thiết lập các tham số như giá ban đầu, khoảng cách lưới, giá trị lưới, chế độ đa không gian, thiết lập phức tạp hơn, ảnh hưởng đến lợi nhuận lớn hơn và khó khăn hơn cho người mới.
  2. Chiến lược lưới bền vững có rủi ro không hoạt động cao, rủi ro đa hoạt động tương đối thấp, và thậm chí nếu giá trị lưới được đặt nhỏ, thì giá cả không hoạt động nhiều.
  3. Mạng lưới hợp đồng vĩnh cửu có thể chọn chỉ làm nhiều để tránh rủi ro làm trống, nhưng cần phải đối mặt với vấn đề giá hiện tại vượt quá giá ban đầu, dẫn đến vấn đề nắm giữ trống, cần phải đặt lại giá ban đầu.

Một bài viết trước đây đã viết về các nguyên tắc của chiến lược cân bằng và so sánh với chiến lược lưới, và bây giờ bạn có thể tham khảo:https://www.fmz.com/digest-topic/5930Một chiến lược cân bằng luôn giữ một tỷ lệ giá cố định hoặc một vị trí có giá trị, bán một số khi tăng và mua khi giảm, có thể hoạt động với các thiết lập đơn giản. Ngay cả khi giá đồng tiền tăng nhiều, cũng không có rủi ro phá vỡ. Vấn đề của chiến lược cân bằng hiện tại là tỷ lệ sử dụng vốn thấp, không có cách đơn giản để tạo đòn bẩy. Trong khi đó, hợp đồng lâu dài có thể giải quyết vấn đề. Ví dụ: tổng vốn là 1000, bạn có thể giữ cố định 2000, vượt quá vốn ban đầu, tăng tỷ lệ sử dụng vốn.

Đối với người mới, rất khuyến khích chiến lược cân bằng, hoạt động đơn giản, chỉ cần thiết lập một tham số giữ tỷ lệ hoặc giữ giá trị cổ phiếu, bạn có thể chạy mà không cần phải lo lắng về giá liên tục tăng. Một số người có kinh nghiệm có thể chọn chiến lược lưới, tự quyết định giới hạn trên và dưới của các quỹ biến động, nâng cao khả năng sử dụng vốn, tìm kiếm lợi nhuận tối đa.

Để dễ dàng kiểm tra lại nhiều cặp giao dịch hơn, tài liệu này sẽ hiển thị toàn bộ quá trình kiểm tra lại, người dùng có thể tự điều chỉnh các tham số và cặp giao dịch khác nhau để so sánh.

import requests
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests, zipfile, io
%matplotlib inline
## 当前交易对
Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo')
symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))-
                 set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT']
print(symbols)
['FLMUSDT', 'ICPUSDT', 'CHZUSDT', 'APEUSDT', 'DARUSDT', 'TLMUSDT', 'ETHUSDT', 'STMXUSDT', 'ENJUSDT', 'LINKUSDT', 'OGNUSDT', 'RSRUSDT', 'QTUMUSDT', 'UNIUSDT', 'BNBUSDT', 'XLMUSDT', 'ATOMUSDT', 'LPTUSDT', 'UNFIUSDT', 'DASHUSDT', 'BTCUSDT', 'NEOUSDT', 'AAVEUSDT', 'DUSKUSDT', 'XRPUSDT', 'IOTXUSDT', 'CVCUSDT', 'SANDUSDT', 'XTZUSDT', 'IOTAUSDT', 'BELUSDT', 'MANAUSDT', 'IOSTUSDT', 'IMXUSDT', 'THETAUSDT', 'SCUSDT', 'DOGEUSDT', 'CELOUSDT', 'BNXUSDT', 'SNXUSDT', 'ZRXUSDT', 'HBARUSDT', 'DOTUSDT', 'ANKRUSDT', 'CELRUSDT', 'BAKEUSDT', 'GALUSDT', 'ICXUSDT', 'LRCUSDT', 'AVAXUSDT', 'C98USDT', 'MTLUSDT', 'FTTUSDT', 'MASKUSDT', 'RLCUSDT', 'MATICUSDT', 'COMPUSDT', 'BLZUSDT', 'CRVUSDT', 'ZECUSDT', 'RUNEUSDT', 'LITUSDT', 'ONEUSDT', 'ADAUSDT', 'NKNUSDT', 'LTCUSDT', 'ATAUSDT', 'GALAUSDT', 'BALUSDT', 'ROSEUSDT', 'EOSUSDT', 'YFIUSDT', 'SKLUSDT', 'BANDUSDT', 'ALGOUSDT', 'NEARUSDT', 'AXSUSDT', 'KSMUSDT', 'AUDIOUSDT', 'SRMUSDT', 'HNTUSDT', 'MKRUSDT', 'KLAYUSDT', 'FLOWUSDT', 'STORJUSDT', 'BCHUSDT', 'DYDXUSDT', 'ARUSDT', 'GMTUSDT', 'CHRUSDT', 'API3USDT', 'VETUSDT', 'KAVAUSDT', 'WAVESUSDT', 'EGLDUSDT', 'SFPUSDT', 'RENUSDT', 'SUSHIUSDT', 'SOLUSDT', 'RVNUSDT', 'ONTUSDT', 'BTSUSDT', 'ZILUSDT', 'GTCUSDT', 'ZENUSDT', 'ALICEUSDT', 'ETCUSDT', 'TRXUSDT', 'TOMOUSDT', 'FILUSDT', 'ARPAUSDT', 'CTKUSDT', 'BATUSDT', 'SXPUSDT', '1INCHUSDT', 'HOTUSDT', 'WOOUSDT', 'LINAUSDT', 'REEFUSDT', 'GRTUSDT', 'RAYUSDT', 'COTIUSDT', 'XMRUSDT', 'PEOPLEUSDT', 'OCEANUSDT', 'JASMYUSDT', 'TRBUSDT', 'ANTUSDT', 'XEMUSDT', 'DGBUSDT', 'ENSUSDT', 'OMGUSDT', 'ALPHAUSDT', 'FTMUSDT', 'DENTUSDT', 'KNCUSDT', 'CTSIUSDT', 'SHIBUSDT', 'XECUSDT']
#获取任意周期K线的函数
def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'):
    Klines = []
    start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000
    end_time =  min(int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000,time.time()*1000)
    intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000}
    while start_time < end_time:
        mid_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time)
        #print(url)
        res = requests.get(url)
        res_list = res.json()
        if type(res_list) == list and len(res_list) > 0:
            start_time = res_list[-1][0]+int(period[:-1])*intervel_map[period[-1]]
            Klines += res_list
        if type(res_list) == list and len(res_list) == 0:
            start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        if mid_time >= end_time:
            break

    df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float')
    df.index = pd.to_datetime(df.time,unit='ms')
    return df

Bằng cách tải xuống giá đóng cửa của tất cả các cặp giao dịch từ năm 2021 cho đến nay, chúng ta có thể quan sát tổng thể các thay đổi trong chỉ số thị trường: Không nghi ngờ gì về thị trường bò từ năm 2021 đến năm 2022, chỉ số đã tăng 14 lần, có thể nói là vàng, và nhiều đồng xu đã tăng hàng trăm lần. Tuy nhiên, vào năm 2022, mở ra thị trường gấu đã kéo dài trong nửa năm, chỉ số đã giảm 80% và hàng chục đồng xu đã rút hơn 90%; Sự sụp đổ mạnh mẽ như vậy phản ánh rủi ro lớn của chiến lược lưới.

Hiện nay chỉ số này đang ở mức khoảng 3, tăng 200% so với đầu năm 2021.

Trong khi đó, đồng tiền này đã tăng hơn 10 lần so với mức tăng đầu năm:

MKRUSDT: 10.294, CRVUSDT: 10.513, STORJUSDT: 10.674, SKLUSDT: 11.009, CVCUSDT: 11.026, SRMUSDT: 11.031, QTUMUSDT: 12.066, ALPUSDT: 12.103, ZENUSDT: 12.631, VETUSDT: 13.296, ROSEUSDT: 13.429, FTTUSDT: 13.705, IOSTT: 13.786, TICOTUSDT: 13.958, NEARUSDT: 14.855, HUDBARUSDT: 14.855, HOCHOBARUSDT: 15.311, 312, 41, 41, 41, 41, 42, 41, 43, 41, 41, 41, 41, 41, 41, 42,

Trong khi đó, một số đồng tiền đang bị thu hồi và lớn hơn 80% so với mức cao nhất:

Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng Ứng dụng

#下载所有交易对的收盘价
start_date = '2021-1-1'
end_date = '2022-05-30'
period = '1d'
df_all = pd.DataFrame(index=pd.date_range(start=start_date, end=end_date, freq=period),columns=symbols)
for i in range(len(symbols)):
    #print(symbols[i])
    symbol = symbols[i]
    df_s = GetKlines(symbol=symbol,start=start_date,end=end_date,period=period,base='api',v='v3')
    df_all[symbol] = df_s[~df_s.index.duplicated(keep='first')].close
#指数变化
df_norm = df_all/df_all.fillna(method='bfill').iloc[0] #归一化
df_norm.mean(axis=1).plot(figsize=(15,6),grid=True);

png

#比年初的最高涨幅
max_up = df_all.max()/df_all.fillna(method='bfill').iloc[0]
print(max_up.map(lambda x:round(x,3)).sort_values().to_dict())
{'JASMYUSDT': 1.0, 'ICPUSDT': 1.0, 'LINAUSDT': 1.0, 'WOOUSDT': 1.0, 'GALUSDT': 1.0, 'PEOPLEUSDT': 1.0, 'XECUSDT': 1.026, 'ENSUSDT': 1.032, 'TLMUSDT': 1.039, 'IMXUSDT': 1.099, 'FLOWUSDT': 1.155, 'ATAUSDT': 1.216, 'DARUSDT': 1.261, 'ALICEUSDT': 1.312, 'BNXUSDT': 1.522, 'API3USDT': 1.732, 'GTCUSDT': 1.833, 'KLAYUSDT': 1.891, 'BAKEUSDT': 1.892, 'DYDXUSDT': 2.062, 'SHIBUSDT': 2.281, 'BTCUSDT': 2.302, 'MASKUSDT': 2.396, 'SFPUSDT': 2.74, 'LPTUSDT': 2.75, 'APEUSDT': 2.783, 'ARUSDT': 2.928, 'CELOUSDT': 2.951, 'ZILUSDT': 2.999, 'LTCUSDT': 3.072, 'SNXUSDT': 3.266, 'XEMUSDT': 3.555, 'XMRUSDT': 3.564, 'YFIUSDT': 3.794, 'BANDUSDT': 3.812, 'RAYUSDT': 3.924, 'REEFUSDT': 4.184, 'ANTUSDT': 4.205, 'XTZUSDT': 4.339, 'CTKUSDT': 4.352, 'LITUSDT': 4.38, 'RSRUSDT': 4.407, 'LINKUSDT': 4.412, 'BCHUSDT': 4.527, 'DASHUSDT': 5.037, 'BALUSDT': 5.172, 'OCEANUSDT': 5.277, 'EOSUSDT': 5.503, 'RENUSDT': 5.538, 'XLMUSDT': 5.563, 'TOMOUSDT': 5.567, 'ZECUSDT': 5.654, 'COMPUSDT': 5.87, 'DGBUSDT': 5.948, 'ALGOUSDT': 5.981, 'ONTUSDT': 5.997, 'BELUSDT': 6.101, 'TRXUSDT': 6.116, 'ZRXUSDT': 6.135, 'GRTUSDT': 6.45, '1INCHUSDT': 6.479, 'DOTUSDT': 6.502, 'ETHUSDT': 6.596, 'KAVAUSDT': 6.687, 'ICXUSDT': 6.74, 'SUSHIUSDT': 6.848, 'AAVEUSDT': 6.931, 'BTSUSDT': 6.961, 'KNCUSDT': 6.966, 'C98USDT': 7.091, 'THETAUSDT': 7.222, 'ATOMUSDT': 7.553, 'OMGUSDT': 7.556, 'SXPUSDT': 7.681, 'UNFIUSDT': 7.696, 'XRPUSDT': 7.726, 'TRBUSDT': 8.241, 'BLZUSDT': 8.434, 'NEOUSDT': 8.491, 'FLMUSDT': 8.506, 'KSMUSDT': 8.571, 'FILUSDT': 8.591, 'IOTAUSDT': 8.616, 'BATUSDT': 8.647, 'ARPAUSDT': 9.055, 'UNIUSDT': 9.104, 'WAVESUSDT': 9.106, 'MKRUSDT': 10.294, 'CRVUSDT': 10.513, 'STORJUSDT': 10.674, 'SKLUSDT': 11.009, 'CVCUSDT': 11.026, 'SRMUSDT': 11.031, 'QTUMUSDT': 12.066, 'ALPHAUSDT': 12.103, 'ZENUSDT': 12.631, 'VETUSDT': 13.296, 'ROSEUSDT': 13.429, 'FTTUSDT': 13.705, 'IOSTUSDT': 13.786, 'COTIUSDT': 13.958, 'NEARUSDT': 14.855, 'HBARUSDT': 15.312, 'RLCUSDT': 15.432, 'SCUSDT': 15.6, 'GALAUSDT': 15.722, 'RUNEUSDT': 15.795, 'ADAUSDT': 16.94, 'MTLUSDT': 17.18, 'BNBUSDT': 17.899, 'RVNUSDT': 18.169, 'EGLDUSDT': 18.879, 'LRCUSDT': 19.499, 'ANKRUSDT': 21.398, 'ETCUSDT': 23.51, 'DUSKUSDT': 23.55, 'AUDIOUSDT': 25.306, 'OGNUSDT': 25.524, 'GMTUSDT': 28.83, 'ENJUSDT': 33.073, 'STMXUSDT': 33.18, 'IOTXUSDT': 35.866, 'AVAXUSDT': 36.946, 'CHZUSDT': 37.128, 'CELRUSDT': 37.273, 'HNTUSDT': 38.779, 'CTSIUSDT': 41.108, 'HOTUSDT': 46.466, 'CHRUSDT': 61.091, 'MANAUSDT': 62.143, 'NKNUSDT': 70.636, 'ONEUSDT': 84.132, 'DENTUSDT': 99.973, 'DOGEUSDT': 121.447, 'SOLUSDT': 140.296, 'MATICUSDT': 161.846, 'FTMUSDT': 192.507, 'SANDUSDT': 203.219, 'AXSUSDT': 270.41}
#当前最大回测
draw_down = df_all.iloc[-1]/df_all.max()
print(draw_down.map(lambda x:round(x,3)).sort_values().to_dict())
{'ICPUSDT': 0.022, 'FILUSDT': 0.043, 'BAKEUSDT': 0.046, 'TLMUSDT': 0.05, 'LITUSDT': 0.053, 'LINAUSDT': 0.054, 'JASMYUSDT': 0.056, 'ALPHAUSDT': 0.062, 'RAYUSDT': 0.062, 'GRTUSDT': 0.067, 'DENTUSDT': 0.068, 'RSRUSDT': 0.068, 'XEMUSDT': 0.068, 'UNFIUSDT': 0.072, 'DYDXUSDT': 0.074, 'SUSHIUSDT': 0.074, 'OGNUSDT': 0.074, 'COMPUSDT': 0.074, 'NKNUSDT': 0.078, 'SKLUSDT': 0.08, 'DGBUSDT': 0.081, 'RLCUSDT': 0.085, 'REEFUSDT': 0.086, 'BANDUSDT': 0.086, 'HOTUSDT': 0.092, 'SRMUSDT': 0.092, 'RENUSDT': 0.092, 'BTSUSDT': 0.093, 'THETAUSDT': 0.094, 'FLMUSDT': 0.094, 'EOSUSDT': 0.095, 'TRBUSDT': 0.095, 'SXPUSDT': 0.095, 'ATAUSDT': 0.096, 'NEOUSDT': 0.096, 'FLOWUSDT': 0.097, 'YFIUSDT': 0.101, 'BALUSDT': 0.106, 'MASKUSDT': 0.106, 'ONTUSDT': 0.108, 'CELRUSDT': 0.108, 'AUDIOUSDT': 0.108, 'SCUSDT': 0.11, 'GALAUSDT': 0.113, 'GTCUSDT': 0.117, 'CTSIUSDT': 0.117, 'STMXUSDT': 0.118, 'DARUSDT': 0.118, 'ALICEUSDT': 0.119, 'SNXUSDT': 0.124, 'FTMUSDT': 0.126, 'BCHUSDT': 0.127, 'SFPUSDT': 0.127, 'ROSEUSDT': 0.128, 'DOGEUSDT': 0.128, 'RVNUSDT': 0.129, 'OCEANUSDT': 0.129, 'VETUSDT': 0.13, 'KSMUSDT': 0.131, 'ICXUSDT': 0.131, 'UNIUSDT': 0.131, 'ONEUSDT': 0.131, '1INCHUSDT': 0.134, 'IOTAUSDT': 0.139, 'C98USDT': 0.139, 'WAVESUSDT': 0.14, 'DUSKUSDT': 0.141, 'LINKUSDT': 0.143, 'DASHUSDT': 0.143, 'OMGUSDT': 0.143, 'PEOPLEUSDT': 0.143, 'AXSUSDT': 0.15, 'ENJUSDT': 0.15, 'QTUMUSDT': 0.152, 'SHIBUSDT': 0.154, 'ZENUSDT': 0.154, 'BLZUSDT': 0.154, 'ANTUSDT': 0.155, 'XECUSDT': 0.155, 'CHZUSDT': 0.158, 'RUNEUSDT': 0.163, 'ENSUSDT': 0.165, 'LRCUSDT': 0.167, 'CHRUSDT': 0.168, 'IOTXUSDT': 0.174, 'TOMOUSDT': 0.176, 'ALGOUSDT': 0.177, 'EGLDUSDT': 0.177, 'ARUSDT': 0.178, 'LTCUSDT': 0.178, 'HNTUSDT': 0.18, 'LPTUSDT': 0.181, 'SOLUSDT': 0.183, 'ARPAUSDT': 0.184, 'BELUSDT': 0.184, 'ETCUSDT': 0.186, 'ZRXUSDT': 0.187, 'AAVEUSDT': 0.187, 'CVCUSDT': 0.188, 'STORJUSDT': 0.189, 'COTIUSDT': 0.19, 'CELOUSDT': 0.191, 'SANDUSDT': 0.191, 'ADAUSDT': 0.192, 'HBARUSDT': 0.194, 'DOTUSDT': 0.195, 'XLMUSDT': 0.195, 'AVAXUSDT': 0.206, 'ANKRUSDT': 0.207, 'MTLUSDT': 0.208, 'MANAUSDT': 0.209, 'CRVUSDT': 0.213, 'API3USDT': 0.221, 'IOSTUSDT': 0.227, 'XRPUSDT': 0.228, 'BATUSDT': 0.228, 'MKRUSDT': 0.229, 'MATICUSDT': 0.229, 'CTKUSDT': 0.233, 'ZILUSDT': 0.233, 'WOOUSDT': 0.234, 'ATOMUSDT': 0.237, 'KLAYUSDT': 0.239, 'XTZUSDT': 0.245, 'IMXUSDT': 0.278, 'NEARUSDT': 0.285, 'GALUSDT': 0.299, 'APEUSDT': 0.305, 'ZECUSDT': 0.309, 'KAVAUSDT': 0.31, 'GMTUSDT': 0.327, 'FTTUSDT': 0.366, 'KNCUSDT': 0.401, 'ETHUSDT': 0.416, 'XMRUSDT': 0.422, 'BTCUSDT': 0.47, 'BNBUSDT': 0.476, 'TRXUSDT': 0.507, 'BNXUSDT': 0.64}

Đầu tiên, chúng ta sử dụng mã đơn giản nhất để mô phỏng tình huống giảm tiếp theo và xem giá bán bùng nổ với các giá trị nắm giữ khác nhau. Vì chiến lược luôn giữ nhiều cổ phiếu, không có rủi ro tăng. Tài chính ban đầu là 1000, giá đồng tiền là 1, điều chỉnh tỷ lệ là 0.01. Kết quả là như sau.

Giá trị nắm giữ Đánh giá nhiều
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
for Hold_value in [300,500,800,1000,1500,2000,3000,5000,10000]:
    amount = Hold_value/1
    hold_price = 1
    margin = 1000
    Pct = 0.01
    i = 0
    while margin > 0:
        i += 1
        if i>500:
            break
        buy_price = (1-Pct)*Hold_value/amount
        buy_amount = Hold_value*Pct/buy_price
        hold_price = (amount * hold_price + buy_amount * buy_price) / (buy_amount + amount)
        amount += buy_amount
        margin = 1000 + amount * (buy_price - hold_price)
    print(Hold_value, round(buy_price,3))
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
#还是用原来的回测引擎
class Exchange:
    
    def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000):
        self.initial_balance = initial_balance #初始的资产
        self.fee = fee
        self.trade_symbols = trade_symbols
        self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount):
        
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        self.account['USDT']['realised_profit'] -= price*amount*self.fee #扣除手续费
        self.account['USDT']['fee'] += price*amount*self.fee
        self.account[symbol]['fee'] += price*amount*self.fee

        if cover_amount > 0: #先平仓
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  #利润
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
                    
    
    def Buy(self, symbol, price, amount):
        self.Trade(symbol, 1, price, amount)
        
    def Sell(self, symbol, price, amount):
        self.Trade(symbol, -1, price, amount)
        
    def Update(self, close_price): #对资产进行更新
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)

Đầu tiên, chúng ta xem xét lại hoạt động của chiến lược cân bằng TRX, TRX có mức rút lui tối đa trong vòng thị trường gấu tương đối nhỏ, do đó có một số đặc điểm. Dữ liệu chọn đường 5minK cho đến năm 2021, vốn ban đầu là 1000, tỷ lệ điều chỉnh là 0.01, giá trị giữ 2000, phí xử lý là 0.0002.

TRX bắt đầu với giá 0.02676U, đạt mức cao nhất là 0.18U và hiện đang ở khoảng 0.08U, biến động rất mạnh.

Đánh giá lợi nhuận cuối cùng 4524U, đã rất gần với lợi nhuận của TRX ở thời điểm 0.18, đòn bẩy thấp hơn 2 lần từ khi bắt đầu đến cuối cùng thấp hơn 0.4, và khả năng bùng nổ cũng ngày càng thấp, trong đó có cơ hội tăng giá trị nắm giữ. Nhưng lợi nhuận luôn bất động dưới 2000U. Đây cũng là một trong những nhược điểm của chiến lược cân bằng.

symbol = 'TRXUSDT'
df_trx = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_trx.close.plot(figsize=(15,6),grid=True);

png

#TRX平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_trx.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx.index = pd.to_datetime(res_trx.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4524.226998288555 91.0
#收益
res_trx.profit.plot(figsize=(15,6),grid=True);

png

#实际占用杠杆
(res_trx.value/(res_trx.profit+1000)).plot(figsize=(15,6),grid=True);

png

Chúng ta hãy xem lại WAVES, đồng tiền này khá đặc biệt, tăng từ mức 6U lên đến 60U, cuối cùng lại giảm xuống gần 8U hiện tại.

symbol = 'WAVESUSDT'
df_waves = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_waves.close.plot(figsize=(15,6),grid=True);

png

#TWAVES平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_waves.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves.index = pd.to_datetime(res_waves.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4945.149323437233 178.0
df_waves.profit.plot(figsize=(15,6),grid=True);

png

Nhân tiện, đánh giá lại hiệu suất của chiến lược lưới, khoảng cách lưới là 0.01, giá trị lưới là 10; Trong trường hợp tăng gần 10 lần, cả WAVES và TRX đều có sự rút lui lớn, trong đó WAVES đã rút lại 5000U và TRX cũng vượt quá 3000U, nếu vốn ban đầu ít hơn, cơ bản sẽ bùng nổ.

#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_waves.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) #买单价格,由于是挂单成交,也是最终的撮合价格=
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves_net.index = pd.to_datetime(res_waves_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 1678.0516101975015 70.0
res_waves_net.profit.plot(figsize=(15,6),grid=True);

png

#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_trx.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx_net.index = pd.to_datetime(res_trx_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 -161.06952570521656 37.0
res_trx_net.profit.plot(figsize=(15,6),grid=True);

png

Tóm lại

Phân tích phản hồi lần này sử dụng đường 5minK, biến động giữa không được mô phỏng hoàn toàn, vì vậy lợi nhuận thực tế nên cao hơn một chút. Nhìn chung, chiến lược cân bằng chịu rủi ro tương đối nhỏ, không sợ bão, không cần điều chỉnh các tham số, sử dụng dễ dàng hơn, phù hợp với người dùng mới. Chiến lược lưới rất nhạy cảm với cài đặt giá ban đầu, cần một sự phán đoán nhất định về tình hình, nhìn dài hạn, rủi ro không gian là rất cao. Trong cuộc chiến tranh này, các chiến binh sẽ được sử dụng miễn phí chiến lược cân bằng bền vững, và mọi người đều được chào đón để trải nghiệm.


Có liên quan

Thêm nữa

77924998Có phải sử dụng chiến lược chắc chắn là tốt hơn so với giữ đồng xu không di chuyển?

Giấc mơ có giá trị 8 chữ sốLàm thế nào để tham gia vào cuộc chiến tranh của bạn và làm thế nào để sử dụng chiến thuật này?

18539809925Tại sao lại có chiến lược chiến tranh của Binh An?

Johnny.Trong bối cảnh tỷ lệ tăng lãi suất của USD, thị trường tiền điện tử sẽ ở trong tình trạng gấu trong một thời gian, nếu như vậy, trong sáu tháng gần đây, liệu những thứ như TRX, ETH có thể tiếp tục có lợi nhuận cao hơn trên lưới không?

JackmaNhược điểm của điều này là không có cách tính toán chi phí, trong trường hợp nắm giữ lâu dài, chi phí ảnh hưởng rất lớn!

JackmaĐộc ác

dewangMỗi chiến lược đều có hiệu quả trong một kịch bản cụ thể, chiến lược cân bằng là một chiến lược ngược xu hướng, giữ đồng tiền bất động tương đương với một chiến lược xu hướng ổn định mà không tăng cường hoặc không tăng đòn bẩy cho vốn.