The open close cross point strategy is a quantitative trading strategy based on moving average crossovers. It determines price trends by calculating crosses between fast and slow moving average lines and generates buy and sell signals at crossover points. This strategy uses Hull Moving Average as the fast line and Super Smoother filter as the slow line. This combination incorporates both the smoothness and trend determination ability of moving averages and can effectively identify price movements to produce relatively reliable trading signals.
The formulas for calculating the open close cross point strategy are: Fast line (Hull MA): WMA(2 * WMA(price, n/2) - WMA(price, n), SQRT(n)) Slow line (Super Smoother Filter): Price triple filter
Where WMA is the Weighted Moving Average, SQRT is the square root, and the filter contains one first order lag term and two second order lag terms.
The strategy judges the relationship between the fast and slow lines by calculating their values. Where:
Upward crossover of fast line is buy signal
Downward crossover of fast line is sell signal
The open close cross point strategy combines the advantages of dual moving average judgments and point trading. It can accurately capture trend turning points for timely entries and exits. Compared to single moving average strategies, it has the following advantages:
The open close cross point strategy also carries certain risks:
The open close cross point strategy can be optimized in the following dimensions:
The open close cross point strategy inherits the advantages of moving average strategies while expanding the use of dual moving average judgments and point trading models to form a more advanced and reliable quantitative trading scheme. It has unique advantages in timing trading which deserve live testing and application exploration. This article thoroughly parses the principles, strengths and weaknesses of this strategy, and provides optimization ideas for reference. It is believed that with continuous improvements on the model and parameters, this strategy will become a formidable market timing tool.
/*backtest start: 2022-12-06 00:00:00 end: 2023-12-12 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 // strategy(title='Open Close Cross Strategy ', shorttitle='sacinvesting', overlay=true, pyramiding=0, default_qty_type=strategy.percent_of_equity, default_qty_value=10, calc_on_every_tick=false) // === INPUTS === useRes = input(defval=true, title='Use Alternate Resolution?') intRes = input(defval=3, title='Multiplier for Alernate Resolution') stratRes = timeframe.ismonthly ? str.tostring(timeframe.multiplier * intRes, '###M') : timeframe.isweekly ? str.tostring(timeframe.multiplier * intRes, '###W') : timeframe.isdaily ? str.tostring(timeframe.multiplier * intRes, '###D') : timeframe.isintraday ? str.tostring(timeframe.multiplier * intRes, '####') : '60' basisType = input.string(defval='SMMA', title='MA Type: ', options=['SMA', 'EMA', 'DEMA', 'TEMA', 'WMA', 'VWMA', 'SMMA', 'HullMA', 'LSMA', 'ALMA', 'SSMA', 'TMA']) basisLen = input.int(defval=8, title='MA Period', minval=1) offsetSigma = input.int(defval=6, title='Offset for LSMA / Sigma for ALMA', minval=0) offsetALMA = input.float(defval=0.85, title='Offset for ALMA', minval=0, step=0.01) scolor = input(false, title='Show coloured Bars to indicate Trend?') delayOffset = input.int(defval=0, title='Delay Open/Close MA (Forces Non-Repainting)', minval=0, step=1) tradeType = input.string('BOTH', title='What trades should be taken : ', options=['LONG', 'SHORT', 'BOTH', 'NONE']) // === /INPUTS === // Constants colours that include fully non-transparent option. green100 = #008000FF lime100 = #00FF00FF red100 = #FF0000FF blue100 = #0000FFFF aqua100 = #00FFFFFF darkred100 = #8B0000FF gray100 = #808080FF // === BASE FUNCTIONS === // Returns MA input selection variant, default to SMA if blank or typo. variant(type, src, len, offSig, offALMA) => v1 = ta.sma(src, len) // Simple v2 = ta.ema(src, len) // Exponential v3 = 2 * v2 - ta.ema(v2, len) // Double Exponential v4 = 3 * (v2 - ta.ema(v2, len)) + ta.ema(ta.ema(v2, len), len) // Triple Exponential v5 = ta.wma(src, len) // Weighted v6 = ta.vwma(src, len) // Volume Weighted v7 = 0.0 sma_1 = ta.sma(src, len) // Smoothed v7 := na(v7[1]) ? sma_1 : (v7[1] * (len - 1) + src) / len v8 = ta.wma(2 * ta.wma(src, len / 2) - ta.wma(src, len), math.round(math.sqrt(len))) // Hull v9 = ta.linreg(src, len, offSig) // Least Squares v10 = ta.alma(src, len, offALMA, offSig) // Arnaud Legoux v11 = ta.sma(v1, len) // Triangular (extreme smooth) // SuperSmoother filter // ©️ 2013 John F. Ehlers a1 = math.exp(-1.414 * 3.14159 / len) b1 = 2 * a1 * math.cos(1.414 * 3.14159 / len) c2 = b1 c3 = -a1 * a1 c1 = 1 - c2 - c3 v12 = 0.0 v12 := c1 * (src + nz(src[1])) / 2 + c2 * nz(v12[1]) + c3 * nz(v12[2]) type == 'EMA' ? v2 : type == 'DEMA' ? v3 : type == 'TEMA' ? v4 : type == 'WMA' ? v5 : type == 'VWMA' ? v6 : type == 'SMMA' ? v7 : type == 'HullMA' ? v8 : type == 'LSMA' ? v9 : type == 'ALMA' ? v10 : type == 'TMA' ? v11 : type == 'SSMA' ? v12 : v1 // security wrapper for repeat calls reso(exp, use, res) => security_1 = request.security(syminfo.tickerid, res, exp, gaps=barmerge.gaps_off, lookahead=barmerge.lookahead_on) use ? security_1 : exp // === /BASE FUNCTIONS === // === SERIES SETUP === closeSeries = variant(basisType, close[delayOffset], basisLen, offsetSigma, offsetALMA) openSeries = variant(basisType, open[delayOffset], basisLen, offsetSigma, offsetALMA) // === /SERIES === // === PLOTTING === // Get Alternate resolution Series if selected. closeSeriesAlt = reso(closeSeries, useRes, stratRes) openSeriesAlt = reso(openSeries, useRes, stratRes) // trendColour = closeSeriesAlt > openSeriesAlt ? color.green : color.red bcolour = closeSeries > openSeriesAlt ? lime100 : red100 barcolor(scolor ? bcolour : na, title='Bar Colours') closeP = plot(closeSeriesAlt, title='Close Series', color=trendColour, linewidth=2, style=plot.style_line, transp=20) openP = plot(openSeriesAlt, title='Open Series', color=trendColour, linewidth=2, style=plot.style_line, transp=20) fill(closeP, openP, color=trendColour, transp=80) // === /PLOTTING === // // // === ALERT conditions xlong = ta.crossover(closeSeriesAlt, openSeriesAlt) xshort = ta.crossunder(closeSeriesAlt, openSeriesAlt) longCond = xlong // alternative: longCond[1]? false : (xlong or xlong[1]) and close>closeSeriesAlt and close>=open shortCond = xshort // alternative: shortCond[1]? false : (xshort or xshort[1]) and close<closeSeriesAlt and close<=open // === /ALERT conditions. // === STRATEGY === // stop loss slPoints = input.int(defval=0, title='Initial Stop Loss Points (zero to disable)', minval=0) tpPoints = input.int(defval=0, title='Initial Target Profit Points (zero for disable)', minval=0) // Include bar limiting algorithm ebar = input.int(defval=10000, title='Number of Bars for Back Testing', minval=0) dummy = input(false, title='- SET to ZERO for Daily or Longer Timeframes') // // Calculate how many mars since last bar tdays = (timenow - time) / 60000.0 // number of minutes since last bar tdays := timeframe.ismonthly ? tdays / 1440.0 / 5.0 / 4.3 / timeframe.multiplier : timeframe.isweekly ? tdays / 1440.0 / 5.0 / timeframe.multiplier : timeframe.isdaily ? tdays / 1440.0 / timeframe.multiplier : tdays / timeframe.multiplier // number of bars since last bar // //set up exit parameters TP = tpPoints > 0 ? tpPoints : na SL = slPoints > 0 ? slPoints : na // Make sure we are within the bar range, Set up entries and exit conditions if (ebar == 0 or tdays <= ebar) and tradeType != 'NONE' strategy.entry('long', strategy.long, when=longCond == true and tradeType != 'SHORT') strategy.entry('short', strategy.short, when=shortCond == true and tradeType != 'LONG') strategy.close('long', when=shortCond == true and tradeType == 'LONG') strategy.close('short', when=longCond == true and tradeType == 'SHORT') strategy.exit('XL', from_entry='long', profit=TP, loss=SL) strategy.exit('XS', from_entry='short', profit=TP, loss=SL) // === /STRATEGY === // eof