这个交易策略结合使用了相对强弱指标(RSI)和随机相对强弱指标(Stochastic RSI)两个技术指标来产生交易信号。策略额外利用更高时间框架的加密货币价格走势来确认趋势,以提高信号的可靠性。
多时间框架RSI-SRSI交易策略(Multi Timeframe RSI-SRSI Trading Strategy)
该策略根据RSI指标值高低来判断超买超卖现象。当RSI低于30时为超卖信号,高于70时为超买信号。Stochastic RSI指标则观察RSI指标本身的波动情况。Stochastic RSI低于5为超卖信号,高于50为超买信号。
策略同时结合更高时间框架(例如周线)的加密货币价格走势。只有当更高时间框架的RSI高于阈值时(例如45),才产生买入交易信号。这个设定能过滤掉整体处于下跌趋势时出现的非persistent的超卖信号。
买入和卖出信号在触发后,需要经过一定周期(如8根K线)的确认,避免产生误导性的信号。
该策略主要依靠RSI和Stochastic RSI两个经典交易指标产生交易信号。同时,引入更高时间框架进行趋势确认,能有效过滤误导信号,提高信号质量。通过参数优化,止损策略等手段能进一步增强策略表现。该策略思路简单直接,容易理解实现,是量化交易的一个很好的起点。
/*backtest start: 2023-02-11 00:00:00 end: 2024-02-17 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("RSI and Stochatic Strategy", overlay=true, use_bar_magnifier = false) /////// Inputs /////////////// // RSI and SRSI rsiLength = input(14, title="RSI Length") stochLength = input(14, title="Stochastic Length") kSmooth = input(3, title="K Smooth") dSmooth = input(3, title="D Smooth") //////// thresholds /////////////// st_low = input(5, title="Low SRSI") // stochastic RSI low -- prepare to sell st_hi = input(50, title="High SRSI") // stochastic RSI high -- prepare to buy diff = input(5, title="difference") // minimum change in RSI // inval_diff = input(12, title="difference") // invalidation difference: change in the oposite direction that invalidates rsi falling/rising rsi_low = input(30, title="Low RSI") // RSI considered low rsi_hi = input(60, title="High RSI") // RSI considered high rsi_ht_hi = input(45, title="High higher time frame RSI") // RSI in higher time frame considered high /// buy trigger duration tr_dur = input(8, title="Trigger duration") low_dur = input(20, title="Monitoring last low") ///////////////// Higher time frame trend /////////////////// // higher time frame resolution res2 = input.timeframe("W", title="Higher time-frame") // Input for the ticker symbol, default is an empty string // For instance we could monitor BTC higher time frame trend symbol = input("BTC_USDT:swap", "Input Ticker (leave empty for current)") // Determine the symbol to use inputSymbol = symbol == "" ? syminfo.tickerid : symbol ////////////////////////////////////////////////////////// // Calculate RSI // rsi = ta.rsi(close, rsiLength) // Calculate Stochastic RSI // rsiLowest = ta.lowest(rsi, stochLength) rsiHighest = ta.highest(rsi, stochLength) stochRsi = 100 * (rsi - rsiLowest) / (rsiHighest - rsiLowest) // Apply smoothing K = ta.sma(stochRsi, kSmooth) D = ta.sma(K, dSmooth) // Higher time Frame RSI cl2 = request.security(inputSymbol, res2, close) rsi2 = ta.rsi(cl2, 14) // SRSI BUY/SELL signals sell_stoch = (ta.lowest(K, tr_dur) < st_low) or (ta.highest(rsi, tr_dur) < rsi_low) buy_stoch = ((ta.lowest(K, tr_dur) > st_hi) or (ta.lowest(rsi, tr_dur) > rsi_hi)) and (rsi2 > rsi_ht_hi) // valitation / invalidation sell signal ll = ta.barssince(not sell_stoch)+1 sell_validation = (ta.highest(rsi, ll)>rsi[ll]+diff and rsi < rsi[ll]) or (rsi < rsi[ll]-diff) // valitation / invalidation buy signal llb = ta.barssince(not buy_stoch)+1 buy_validation = (ta.lowest(rsi, llb)<rsi[llb]-diff and rsi > rsi[llb]) or (rsi > rsi_hi and rsi - rsi[tr_dur] > 0) sell_signal = sell_stoch and sell_validation buy_signal = buy_stoch and buy_validation // Define the start date for the strategy startYear = input(2019, "Start Year") startMonth = input(1, "Start Month") startDay = input(1, "Start Day") // Convert the start date to Unix time startTime = timestamp(startYear, startMonth, startDay, 00, 00) // Define the end date for the strategy endYear = input(2030, "End Year") endMonth = input(1, "End Month") endDay = input(1, "End Day") // Convert the end date to Unix time endTime = timestamp(endYear, endMonth, endDay, 00, 00) if true if buy_signal strategy.entry("buy", strategy.long, comment = "Buy") if sell_signal strategy.close("buy", "Sell")