This strategy is a comprehensive trading system that combines K-Nearest Neighbors (KNN) machine learning algorithm, candlestick pattern recognition, and volume analysis. Through multi-dimensional analysis methods including moving average channels, volume threshold validation, and probability statistics, the strategy forms a three-dimensional analysis framework to capture potential trading opportunities.
The core logic of the strategy is built upon several key elements: 1. Using Simple Moving Average (SMA) and standard deviation to construct price channels for identifying overbought and oversold areas 2. Identifying nine classic candlestick patterns through programmatically defined conditions, including Hammer, Shooting Star, Engulfing patterns, etc. 3. Incorporating KNN algorithm to learn from historical price movements and predict future price directions 4. Using volume as a signal confirmation indicator, requiring volume to be above the set threshold when signals trigger 5. Calculating probability distributions for upward and downward movements as one of the signal filtering conditions
This strategy constructs a robust trading system by combining traditional technical analysis with modern machine learning methods. The strategy’s multi-dimensional analysis framework and strict signal confirmation mechanism provide reliable basis for trading decisions. Through continuous optimization and risk control, the strategy is expected to maintain stable performance under various market conditions.
/*backtest start: 2024-01-17 00:00:00 end: 2025-01-16 00:00:00 period: 2d basePeriod: 2d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}] */ //@version=6 strategy("Candle Pattern Analyzer with Volume", overlay=true) // Input parameters length = input.int(20, "Channel Length", minval=1) mult = input.float(2.0, "Volatility Multiplier", minval=0.1) candleLength = input.int(5, "Candle Length", minval=1) k = input.int(5, "KNN Neighbors", minval=1) volumeThreshold = input.int(100000, "Volume Threshold", minval=1) // Calculate channel basis = ta.sma(close, length) dev = mult * ta.stdev(close, length) upper = basis + dev lower = basis - dev // Plot channel plot(basis, color=color.blue) plot(upper, color=color.green) plot(lower, color=color.red) // Identify candle patterns isBullish = close > open isBearish = close < open // Pre-calculate SMAs smaLow = ta.sma(low, candleLength) smaHigh = ta.sma(high, candleLength) smaClose = ta.sma(close, candleLength) // Hammer pattern isHammer = isBullish and low < smaLow and close > smaClose and (close - low) / (high - low) > 0.6 and low < low[1] // Shooting Star pattern isShootingStar = isBearish and high > smaHigh and close < smaClose and (high - close) / (high - low) > 0.6 and high > high[1] // Inverse Hammer pattern isInverseHammer = isBullish and high > smaHigh and close < smaClose and (high - close) / (high - low) > 0.6 and high > high[1] // Bullish Engulfing pattern isBullishEngulfing = isBullish and close > high[1] and open < low[1] // Bearish Engulfing pattern isBearishEngulfing = isBearish and close < low[1] and open > high[1] // Morning Star pattern isMorningStar = isBullish and close[2] < open[2] and close[1] < open[1] and close > open[1] // Evening Star pattern isEveningStar = isBearish and close[2] > open[2] and close[1] > open[1] and close < open[1] // Three Black Crows pattern isThreeBlackCrows = isBearish and close < close[1] and close[1] < close[2] and close[2] < close[3] // Three White Soldiers pattern isThreeWhiteSoldiers = isBullish and close > close[1] and close[1] > close[2] and close[2] > close[3] // Compare previous candles prevCandleUp = close[1] > open[1] prevCandleDown = close[1] < open[1] // Calculate probability probUp = ta.sma(close > open ? 1 : 0, candleLength) / candleLength probDown = ta.sma(close < open ? 1 : 0, candleLength) / candleLength // Generate signals buySignal = isHammer and prevCandleDown and probUp > probDown and volume > volumeThreshold sellSignal = isShootingStar and prevCandleUp and probDown > probUp and volume > volumeThreshold // Highlight patterns color candleColor = na if (isHammer) candleColor := color.green label.new(bar_index, high, "Hammer", color=color.green, style=label.style_label_up) else if (isShootingStar) candleColor := color.red label.new(bar_index, low, "Shooting Star", color=color.red, style=label.style_label_down) else if (isInverseHammer) candleColor := color.blue label.new(bar_index, high, "Inverse Hammer", color=color.blue, style=label.style_label_up) else if (isBullishEngulfing) candleColor := color.yellow label.new(bar_index, high, "Bullish Engulfing", color=color.yellow, style=label.style_label_up) else if (isBearishEngulfing) candleColor := color.purple label.new(bar_index, low, "Bearish Engulfing", color=color.purple, style=label.style_label_down) else if (isMorningStar) candleColor := color.orange label.new(bar_index, high, "Morning Star", color=color.orange, style=label.style_label_up) else if (isEveningStar) candleColor := color.new(color.red, 80) label.new(bar_index, low, "Evening Star", color=color.new(color.red, 80), style=label.style_label_down) else if (isThreeBlackCrows) candleColor := color.black label.new(bar_index, low, "Three Black Crows", color=color.black, style=label.style_label_down) else if (isThreeWhiteSoldiers) candleColor := color.white label.new(bar_index, high, "Three White Soldiers", color=color.white, style=label.style_label_up) // Plot candles barcolor(candleColor) // KNN algorithm var float[] knnData = array.new_float(k, na) var float[] knnLabels = array.new_float(k, na) // Create an array to store KNN labels array.set(knnLabels, 0, 1.0) // Label for "up" movement // Shift KNN dataset to make room for new data point for i = 1 to k-1 array.set(knnData, i, array.get(knnData, i-1)) array.set(knnLabels, i, array.get(knnLabels, i-1)) // Predict next movement using KNN algorithm float prediction = 0.0 for i = 0 to k-1 float distance = math.abs(close - array.get(knnData, i)) prediction += array.get(knnLabels, i) / distance prediction /= k // Plot prediction // line.new(bar_index, close, bar_index + 1, prediction, color=color.purple) // Plot resistance and support lines float resistance = ta.sma(high, length) float support = ta.sma(low, length) // line.new(bar_index, resistance, bar_index + 1, resistance, color=color.green, style=line.style_dashed) // line.new(bar_index, support, bar_index + 1, support, color=color.red, style=line.style_dashed) // Plot buy and sell signals with prices if (buySignal) // label.new(bar_index, low, "Buy at " + str.tostring(low), color=color.green, style=label.style_label_up) strategy.entry("Buy", strategy.long, comment="Buy at " + str.tostring(low)) if (sellSignal) // label.new(bar_index, high, "Sell at " + str.tostring(high), color=color.red, style=label.style_label_down) strategy.entry("Sell", strategy.short, comment="Sell at " + str.tostring(high)) // Create alerts alertcondition(buySignal, title="Buy Signal", message="Buy signal generated!") alertcondition(sellSignal, title="Sell Signal", message="Sell signal generated!")