资源加载中... loading...

适合熊市抄底的永续平衡策略

Author: 小草, Created: 2022-06-02 10:00:04, Updated: 2024-12-02 21:36:36

img

过去FMZ官方发布了一个永续网格策略,比较受到用户的欢迎,并且交易TRX的围观实盘在过去1年多风险可控的情况下获得了不少收益。单永续网格策略也有一些问题:

  1. 需要设置初始价格、网格间距、网格价值、多空模式等参数,设置较为繁琐,对收益的影响比较大,新手较难设置。
  2. 永续网格策略做空风险很高,做多风险则相对较低,即使网格价值设置的很小,对于做空爆仓价影响也不是很大。
  3. 永续合约网格可以选择只做多来避免做空风险,目前看还可以。但需要面临当前价格超过初始价格,导致持仓为空的问题,需要重新设置初始价格。

以前写过一篇平衡策略的原理和与网格策略的比较,现在仍可以参考:https://www.fmz.com/digest-topic/5930 。平衡策略永远持有固定价值比例或价值的仓位,涨了就卖一些,跌了就买,可以简单的设置就能运行。即使币价涨很多也没有踏空的风险。现货平衡策略的问题是资金利用率低,没有简单的办法加杠杆。而永续合约则可以解决问题。如总资金为1000,可以固定持有2000,超出了原有资金,提高了资金利用率。还有一个参数是调整比例,控制涨跌多少加仓减仓,如设置为0.01代表涨1%减仓一次,跌1%加仓一次。

对于新手,很推荐平衡策略,操作简单,只需要设定一个持有比例或持仓价值的参数,就可以无脑运行,不用担心价格不断上涨。有一定经验的可以选择网格策略,自己决定波动的上下限和每格资金,提高资金利用率,谋取最大收益。

为了方便更多交易对的回测,这篇文档将会展示完整的回测流程,用户可自行调整不同的参数和交易对作为对比。(版本为Python3,需要代理下载行情,用户可以自己下载Anancoda3或者通过Google的colab运行)

import requests
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests, zipfile, io
%matplotlib inline
## 当前交易对
Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo')
symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))-
                 set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT']
print(symbols)
['FLMUSDT', 'ICPUSDT', 'CHZUSDT', 'APEUSDT', 'DARUSDT', 'TLMUSDT', 'ETHUSDT', 'STMXUSDT', 'ENJUSDT', 'LINKUSDT', 'OGNUSDT', 'RSRUSDT', 'QTUMUSDT', 'UNIUSDT', 'BNBUSDT', 'XLMUSDT', 'ATOMUSDT', 'LPTUSDT', 'UNFIUSDT', 'DASHUSDT', 'BTCUSDT', 'NEOUSDT', 'AAVEUSDT', 'DUSKUSDT', 'XRPUSDT', 'IOTXUSDT', 'CVCUSDT', 'SANDUSDT', 'XTZUSDT', 'IOTAUSDT', 'BELUSDT', 'MANAUSDT', 'IOSTUSDT', 'IMXUSDT', 'THETAUSDT', 'SCUSDT', 'DOGEUSDT', 'CELOUSDT', 'BNXUSDT', 'SNXUSDT', 'ZRXUSDT', 'HBARUSDT', 'DOTUSDT', 'ANKRUSDT', 'CELRUSDT', 'BAKEUSDT', 'GALUSDT', 'ICXUSDT', 'LRCUSDT', 'AVAXUSDT', 'C98USDT', 'MTLUSDT', 'FTTUSDT', 'MASKUSDT', 'RLCUSDT', 'MATICUSDT', 'COMPUSDT', 'BLZUSDT', 'CRVUSDT', 'ZECUSDT', 'RUNEUSDT', 'LITUSDT', 'ONEUSDT', 'ADAUSDT', 'NKNUSDT', 'LTCUSDT', 'ATAUSDT', 'GALAUSDT', 'BALUSDT', 'ROSEUSDT', 'EOSUSDT', 'YFIUSDT', 'SKLUSDT', 'BANDUSDT', 'ALGOUSDT', 'NEARUSDT', 'AXSUSDT', 'KSMUSDT', 'AUDIOUSDT', 'SRMUSDT', 'HNTUSDT', 'MKRUSDT', 'KLAYUSDT', 'FLOWUSDT', 'STORJUSDT', 'BCHUSDT', 'DYDXUSDT', 'ARUSDT', 'GMTUSDT', 'CHRUSDT', 'API3USDT', 'VETUSDT', 'KAVAUSDT', 'WAVESUSDT', 'EGLDUSDT', 'SFPUSDT', 'RENUSDT', 'SUSHIUSDT', 'SOLUSDT', 'RVNUSDT', 'ONTUSDT', 'BTSUSDT', 'ZILUSDT', 'GTCUSDT', 'ZENUSDT', 'ALICEUSDT', 'ETCUSDT', 'TRXUSDT', 'TOMOUSDT', 'FILUSDT', 'ARPAUSDT', 'CTKUSDT', 'BATUSDT', 'SXPUSDT', '1INCHUSDT', 'HOTUSDT', 'WOOUSDT', 'LINAUSDT', 'REEFUSDT', 'GRTUSDT', 'RAYUSDT', 'COTIUSDT', 'XMRUSDT', 'PEOPLEUSDT', 'OCEANUSDT', 'JASMYUSDT', 'TRBUSDT', 'ANTUSDT', 'XEMUSDT', 'DGBUSDT', 'ENSUSDT', 'OMGUSDT', 'ALPHAUSDT', 'FTMUSDT', 'DENTUSDT', 'KNCUSDT', 'CTSIUSDT', 'SHIBUSDT', 'XECUSDT']
#获取任意周期K线的函数
def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'):
    Klines = []
    start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000
    end_time =  min(int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000,time.time()*1000)
    intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000}
    while start_time < end_time:
        mid_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time)
        #print(url)
        res = requests.get(url)
        res_list = res.json()
        if type(res_list) == list and len(res_list) > 0:
            start_time = res_list[-1][0]+int(period[:-1])*intervel_map[period[-1]]
            Klines += res_list
        if type(res_list) == list and len(res_list) == 0:
            start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        if mid_time >= end_time:
            break

    df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float')
    df.index = pd.to_datetime(df.time,unit='ms')
    return df

通过下载2021年至今的所有交易对的收盘价,我们可以观察总的行情指数变化:2021年到2022年是毫无疑问的大牛市行情,指数一度涨了14倍,可以说遍地是黄金,不少币涨了上百倍。然而进入2022年,开启了已经持续半年的熊市行情,指数一度暴跌80%,几十个币回撤幅度超过90%。这样的暴涨暴跌反映了网格策略的巨大风险。

目前指数在3左右,和2021年初相比,任然有200%的涨幅,考虑到市场的发展,目前应该是一个相对底部。

最高价比年初涨幅超过10倍的币种:

‘MKRUSDT’: 10.294, ‘CRVUSDT’: 10.513, ‘STORJUSDT’: 10.674, ‘SKLUSDT’: 11.009, ‘CVCUSDT’: 11.026, ‘SRMUSDT’: 11.031, ‘QTUMUSDT’: 12.066, ‘ALPHAUSDT’: 12.103, ‘ZENUSDT’: 12.631, ‘VETUSDT’: 13.296, ‘ROSEUSDT’: 13.429, ‘FTTUSDT’: 13.705, ‘IOSTUSDT’: 13.786, ‘COTIUSDT’: 13.958, ‘NEARUSDT’: 14.855, ‘HBARUSDT’: 15.312, ‘RLCUSDT’: 15.432, ‘SCUSDT’: 15.6, ‘GALAUSDT’: 15.722, ‘RUNEUSDT’: 15.795, ‘ADAUSDT’: 16.94, ‘MTLUSDT’: 17.18, ‘BNBUSDT’: 17.899, ‘RVNUSDT’: 18.169, ‘EGLDUSDT’: 18.879, ‘LRCUSDT’: 19.499, ‘ANKRUSDT’: 21.398, ‘ETCUSDT’: 23.51, ‘DUSKUSDT’: 23.55, ‘AUDIOUSDT’: 25.306, ‘OGNUSDT’: 25.524, ‘GMTUSDT’: 28.83, ‘ENJUSDT’: 33.073, ‘STMXUSDT’: 33.18, ‘IOTXUSDT’: 35.866, ‘AVAXUSDT’: 36.946, ‘CHZUSDT’: 37.128, ‘CELRUSDT’: 37.273, ‘HNTUSDT’: 38.779, ‘CTSIUSDT’: 41.108, ‘HOTUSDT’: 46.466, ‘CHRUSDT’: 61.091, ‘MANAUSDT’: 62.143, ‘NKNUSDT’: 70.636, ‘ONEUSDT’: 84.132, ‘DENTUSDT’: 99.973, ‘DOGEUSDT’: 121.447, ‘SOLUSDT’: 140.296, ‘MATICUSDT’: 161.846, ‘FTMUSDT’: 192.507, ‘SANDUSDT’: 203.219, ‘AXSUSDT’: 270.41

当前回撤和最高点相比大于80%的币种:

ICPUSDT’: 0.022, ‘FILUSDT’: 0.043, ‘BAKEUSDT’: 0.046, ‘TLMUSDT’: 0.05, ‘LITUSDT’: 0.053, ‘LINAUSDT’: 0.054, ‘JASMYUSDT’: 0.056, ‘ALPHAUSDT’: 0.062, ‘RAYUSDT’: 0.062, ‘GRTUSDT’: 0.067, ‘DENTUSDT’: 0.068, ‘RSRUSDT’: 0.068, ‘XEMUSDT’: 0.068, ‘UNFIUSDT’: 0.072, ‘DYDXUSDT’: 0.074, ‘SUSHIUSDT’: 0.074, ‘OGNUSDT’: 0.074, ‘COMPUSDT’: 0.074, ‘NKNUSDT’: 0.078, ‘SKLUSDT’: 0.08, ‘DGBUSDT’: 0.081, ‘RLCUSDT’: 0.085, ‘REEFUSDT’: 0.086, ‘BANDUSDT’: 0.086, ‘HOTUSDT’: 0.092, ‘SRMUSDT’: 0.092, ‘RENUSDT’: 0.092, ‘BTSUSDT’: 0.093, ‘THETAUSDT’: 0.094, ‘FLMUSDT’: 0.094, ‘EOSUSDT’: 0.095, ‘TRBUSDT’: 0.095, ‘SXPUSDT’: 0.095, ‘ATAUSDT’: 0.096, ‘NEOUSDT’: 0.096, ‘FLOWUSDT’: 0.097, ‘YFIUSDT’: 0.101, ‘BALUSDT’: 0.106, ‘MASKUSDT’: 0.106, ‘ONTUSDT’: 0.108, ‘CELRUSDT’: 0.108, ‘AUDIOUSDT’: 0.108, ‘SCUSDT’: 0.11, ‘GALAUSDT’: 0.113, ‘GTCUSDT’: 0.117, ‘CTSIUSDT’: 0.117, ‘STMXUSDT’: 0.118, ‘DARUSDT’: 0.118, ‘ALICEUSDT’: 0.119, ‘SNXUSDT’: 0.124, ‘FTMUSDT’: 0.126, ‘BCHUSDT’: 0.127, ‘SFPUSDT’: 0.127, ‘ROSEUSDT’: 0.128, ‘DOGEUSDT’: 0.128, ‘RVNUSDT’: 0.129, ‘OCEANUSDT’: 0.129, ‘VETUSDT’: 0.13, ‘KSMUSDT’: 0.131, ‘ICXUSDT’: 0.131, ‘UNIUSDT’: 0.131, ‘ONEUSDT’: 0.131, ‘1INCHUSDT’: 0.134, ‘IOTAUSDT’: 0.139, ‘C98USDT’: 0.139, ‘WAVESUSDT’: 0.14, ‘DUSKUSDT’: 0.141, ‘LINKUSDT’: 0.143, ‘DASHUSDT’: 0.143, ‘OMGUSDT’: 0.143, ‘PEOPLEUSDT’: 0.143, ‘AXSUSDT’: 0.15, ‘ENJUSDT’: 0.15, ‘QTUMUSDT’: 0.152, ‘SHIBUSDT’: 0.154, ‘ZENUSDT’: 0.154, ‘BLZUSDT’: 0.154, ‘ANTUSDT’: 0.155, ‘XECUSDT’: 0.155, ‘CHZUSDT’: 0.158, ‘RUNEUSDT’: 0.163, ‘ENSUSDT’: 0.165, ‘LRCUSDT’: 0.167, ‘CHRUSDT’: 0.168, ‘IOTXUSDT’: 0.174, ‘TOMOUSDT’: 0.176, ‘ALGOUSDT’: 0.177, ‘EGLDUSDT’: 0.177, ‘ARUSDT’: 0.178, ‘LTCUSDT’: 0.178, ‘HNTUSDT’: 0.18, ‘LPTUSDT’: 0.181, ‘SOLUSDT’: 0.183, ‘ARPAUSDT’: 0.184, ‘BELUSDT’: 0.184, ‘ETCUSDT’: 0.186, ‘ZRXUSDT’: 0.187, ‘AAVEUSDT’: 0.187, ‘CVCUSDT’: 0.188, ‘STORJUSDT’: 0.189, ‘COTIUSDT’: 0.19, ‘CELOUSDT’: 0.191, ‘SANDUSDT’: 0.191, ‘ADAUSDT’: 0.192, ‘HBARUSDT’: 0.194, ‘DOTUSDT’: 0.195, ‘XLMUSDT’: 0.195

#下载所有交易对的收盘价
start_date = '2021-1-1'
end_date = '2022-05-30'
period = '1d'
df_all = pd.DataFrame(index=pd.date_range(start=start_date, end=end_date, freq=period),columns=symbols)
for i in range(len(symbols)):
    #print(symbols[i])
    symbol = symbols[i]
    df_s = GetKlines(symbol=symbol,start=start_date,end=end_date,period=period,base='api',v='v3')
    df_all[symbol] = df_s[~df_s.index.duplicated(keep='first')].close
#指数变化
df_norm = df_all/df_all.fillna(method='bfill').iloc[0] #归一化
df_norm.mean(axis=1).plot(figsize=(15,6),grid=True);

png

#比年初的最高涨幅
max_up = df_all.max()/df_all.fillna(method='bfill').iloc[0]
print(max_up.map(lambda x:round(x,3)).sort_values().to_dict())
{'JASMYUSDT': 1.0, 'ICPUSDT': 1.0, 'LINAUSDT': 1.0, 'WOOUSDT': 1.0, 'GALUSDT': 1.0, 'PEOPLEUSDT': 1.0, 'XECUSDT': 1.026, 'ENSUSDT': 1.032, 'TLMUSDT': 1.039, 'IMXUSDT': 1.099, 'FLOWUSDT': 1.155, 'ATAUSDT': 1.216, 'DARUSDT': 1.261, 'ALICEUSDT': 1.312, 'BNXUSDT': 1.522, 'API3USDT': 1.732, 'GTCUSDT': 1.833, 'KLAYUSDT': 1.891, 'BAKEUSDT': 1.892, 'DYDXUSDT': 2.062, 'SHIBUSDT': 2.281, 'BTCUSDT': 2.302, 'MASKUSDT': 2.396, 'SFPUSDT': 2.74, 'LPTUSDT': 2.75, 'APEUSDT': 2.783, 'ARUSDT': 2.928, 'CELOUSDT': 2.951, 'ZILUSDT': 2.999, 'LTCUSDT': 3.072, 'SNXUSDT': 3.266, 'XEMUSDT': 3.555, 'XMRUSDT': 3.564, 'YFIUSDT': 3.794, 'BANDUSDT': 3.812, 'RAYUSDT': 3.924, 'REEFUSDT': 4.184, 'ANTUSDT': 4.205, 'XTZUSDT': 4.339, 'CTKUSDT': 4.352, 'LITUSDT': 4.38, 'RSRUSDT': 4.407, 'LINKUSDT': 4.412, 'BCHUSDT': 4.527, 'DASHUSDT': 5.037, 'BALUSDT': 5.172, 'OCEANUSDT': 5.277, 'EOSUSDT': 5.503, 'RENUSDT': 5.538, 'XLMUSDT': 5.563, 'TOMOUSDT': 5.567, 'ZECUSDT': 5.654, 'COMPUSDT': 5.87, 'DGBUSDT': 5.948, 'ALGOUSDT': 5.981, 'ONTUSDT': 5.997, 'BELUSDT': 6.101, 'TRXUSDT': 6.116, 'ZRXUSDT': 6.135, 'GRTUSDT': 6.45, '1INCHUSDT': 6.479, 'DOTUSDT': 6.502, 'ETHUSDT': 6.596, 'KAVAUSDT': 6.687, 'ICXUSDT': 6.74, 'SUSHIUSDT': 6.848, 'AAVEUSDT': 6.931, 'BTSUSDT': 6.961, 'KNCUSDT': 6.966, 'C98USDT': 7.091, 'THETAUSDT': 7.222, 'ATOMUSDT': 7.553, 'OMGUSDT': 7.556, 'SXPUSDT': 7.681, 'UNFIUSDT': 7.696, 'XRPUSDT': 7.726, 'TRBUSDT': 8.241, 'BLZUSDT': 8.434, 'NEOUSDT': 8.491, 'FLMUSDT': 8.506, 'KSMUSDT': 8.571, 'FILUSDT': 8.591, 'IOTAUSDT': 8.616, 'BATUSDT': 8.647, 'ARPAUSDT': 9.055, 'UNIUSDT': 9.104, 'WAVESUSDT': 9.106, 'MKRUSDT': 10.294, 'CRVUSDT': 10.513, 'STORJUSDT': 10.674, 'SKLUSDT': 11.009, 'CVCUSDT': 11.026, 'SRMUSDT': 11.031, 'QTUMUSDT': 12.066, 'ALPHAUSDT': 12.103, 'ZENUSDT': 12.631, 'VETUSDT': 13.296, 'ROSEUSDT': 13.429, 'FTTUSDT': 13.705, 'IOSTUSDT': 13.786, 'COTIUSDT': 13.958, 'NEARUSDT': 14.855, 'HBARUSDT': 15.312, 'RLCUSDT': 15.432, 'SCUSDT': 15.6, 'GALAUSDT': 15.722, 'RUNEUSDT': 15.795, 'ADAUSDT': 16.94, 'MTLUSDT': 17.18, 'BNBUSDT': 17.899, 'RVNUSDT': 18.169, 'EGLDUSDT': 18.879, 'LRCUSDT': 19.499, 'ANKRUSDT': 21.398, 'ETCUSDT': 23.51, 'DUSKUSDT': 23.55, 'AUDIOUSDT': 25.306, 'OGNUSDT': 25.524, 'GMTUSDT': 28.83, 'ENJUSDT': 33.073, 'STMXUSDT': 33.18, 'IOTXUSDT': 35.866, 'AVAXUSDT': 36.946, 'CHZUSDT': 37.128, 'CELRUSDT': 37.273, 'HNTUSDT': 38.779, 'CTSIUSDT': 41.108, 'HOTUSDT': 46.466, 'CHRUSDT': 61.091, 'MANAUSDT': 62.143, 'NKNUSDT': 70.636, 'ONEUSDT': 84.132, 'DENTUSDT': 99.973, 'DOGEUSDT': 121.447, 'SOLUSDT': 140.296, 'MATICUSDT': 161.846, 'FTMUSDT': 192.507, 'SANDUSDT': 203.219, 'AXSUSDT': 270.41}
#当前最大回测
draw_down = df_all.iloc[-1]/df_all.max()
print(draw_down.map(lambda x:round(x,3)).sort_values().to_dict())
{'ICPUSDT': 0.022, 'FILUSDT': 0.043, 'BAKEUSDT': 0.046, 'TLMUSDT': 0.05, 'LITUSDT': 0.053, 'LINAUSDT': 0.054, 'JASMYUSDT': 0.056, 'ALPHAUSDT': 0.062, 'RAYUSDT': 0.062, 'GRTUSDT': 0.067, 'DENTUSDT': 0.068, 'RSRUSDT': 0.068, 'XEMUSDT': 0.068, 'UNFIUSDT': 0.072, 'DYDXUSDT': 0.074, 'SUSHIUSDT': 0.074, 'OGNUSDT': 0.074, 'COMPUSDT': 0.074, 'NKNUSDT': 0.078, 'SKLUSDT': 0.08, 'DGBUSDT': 0.081, 'RLCUSDT': 0.085, 'REEFUSDT': 0.086, 'BANDUSDT': 0.086, 'HOTUSDT': 0.092, 'SRMUSDT': 0.092, 'RENUSDT': 0.092, 'BTSUSDT': 0.093, 'THETAUSDT': 0.094, 'FLMUSDT': 0.094, 'EOSUSDT': 0.095, 'TRBUSDT': 0.095, 'SXPUSDT': 0.095, 'ATAUSDT': 0.096, 'NEOUSDT': 0.096, 'FLOWUSDT': 0.097, 'YFIUSDT': 0.101, 'BALUSDT': 0.106, 'MASKUSDT': 0.106, 'ONTUSDT': 0.108, 'CELRUSDT': 0.108, 'AUDIOUSDT': 0.108, 'SCUSDT': 0.11, 'GALAUSDT': 0.113, 'GTCUSDT': 0.117, 'CTSIUSDT': 0.117, 'STMXUSDT': 0.118, 'DARUSDT': 0.118, 'ALICEUSDT': 0.119, 'SNXUSDT': 0.124, 'FTMUSDT': 0.126, 'BCHUSDT': 0.127, 'SFPUSDT': 0.127, 'ROSEUSDT': 0.128, 'DOGEUSDT': 0.128, 'RVNUSDT': 0.129, 'OCEANUSDT': 0.129, 'VETUSDT': 0.13, 'KSMUSDT': 0.131, 'ICXUSDT': 0.131, 'UNIUSDT': 0.131, 'ONEUSDT': 0.131, '1INCHUSDT': 0.134, 'IOTAUSDT': 0.139, 'C98USDT': 0.139, 'WAVESUSDT': 0.14, 'DUSKUSDT': 0.141, 'LINKUSDT': 0.143, 'DASHUSDT': 0.143, 'OMGUSDT': 0.143, 'PEOPLEUSDT': 0.143, 'AXSUSDT': 0.15, 'ENJUSDT': 0.15, 'QTUMUSDT': 0.152, 'SHIBUSDT': 0.154, 'ZENUSDT': 0.154, 'BLZUSDT': 0.154, 'ANTUSDT': 0.155, 'XECUSDT': 0.155, 'CHZUSDT': 0.158, 'RUNEUSDT': 0.163, 'ENSUSDT': 0.165, 'LRCUSDT': 0.167, 'CHRUSDT': 0.168, 'IOTXUSDT': 0.174, 'TOMOUSDT': 0.176, 'ALGOUSDT': 0.177, 'EGLDUSDT': 0.177, 'ARUSDT': 0.178, 'LTCUSDT': 0.178, 'HNTUSDT': 0.18, 'LPTUSDT': 0.181, 'SOLUSDT': 0.183, 'ARPAUSDT': 0.184, 'BELUSDT': 0.184, 'ETCUSDT': 0.186, 'ZRXUSDT': 0.187, 'AAVEUSDT': 0.187, 'CVCUSDT': 0.188, 'STORJUSDT': 0.189, 'COTIUSDT': 0.19, 'CELOUSDT': 0.191, 'SANDUSDT': 0.191, 'ADAUSDT': 0.192, 'HBARUSDT': 0.194, 'DOTUSDT': 0.195, 'XLMUSDT': 0.195, 'AVAXUSDT': 0.206, 'ANKRUSDT': 0.207, 'MTLUSDT': 0.208, 'MANAUSDT': 0.209, 'CRVUSDT': 0.213, 'API3USDT': 0.221, 'IOSTUSDT': 0.227, 'XRPUSDT': 0.228, 'BATUSDT': 0.228, 'MKRUSDT': 0.229, 'MATICUSDT': 0.229, 'CTKUSDT': 0.233, 'ZILUSDT': 0.233, 'WOOUSDT': 0.234, 'ATOMUSDT': 0.237, 'KLAYUSDT': 0.239, 'XTZUSDT': 0.245, 'IMXUSDT': 0.278, 'NEARUSDT': 0.285, 'GALUSDT': 0.299, 'APEUSDT': 0.305, 'ZECUSDT': 0.309, 'KAVAUSDT': 0.31, 'GMTUSDT': 0.327, 'FTTUSDT': 0.366, 'KNCUSDT': 0.401, 'ETHUSDT': 0.416, 'XMRUSDT': 0.422, 'BTCUSDT': 0.47, 'BNBUSDT': 0.476, 'TRXUSDT': 0.507, 'BNXUSDT': 0.64}

首先我们用最简单的代码模拟下一路下跌的情况,看看不同的持仓价值的爆仓价格。由于策略始终持有多仓,上涨是没有风险的。初始资金为1000,币价为1,调整比例为0.01。结果如下。可见做多爆仓的风险也不低,1.5倍杠杆下,可以抵抗50%的下跌。在当前相对底部的情况下,是可以承受的风险。

持仓价值 做多爆仓价
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
for Hold_value in [300,500,800,1000,1500,2000,3000,5000,10000]:
    amount = Hold_value/1
    hold_price = 1
    margin = 1000
    Pct = 0.01
    i = 0
    while margin > 0:
        i += 1
        if i>500:
            break
        buy_price = (1-Pct)*Hold_value/amount
        buy_amount = Hold_value*Pct/buy_price
        hold_price = (amount * hold_price + buy_amount * buy_price) / (buy_amount + amount)
        amount += buy_amount
        margin = 1000 + amount * (buy_price - hold_price)
    print(Hold_value, round(buy_price,3))
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
#还是用原来的回测引擎
class Exchange:
    
    def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000):
        self.initial_balance = initial_balance #初始的资产
        self.fee = fee
        self.trade_symbols = trade_symbols
        self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount):
        
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        self.account['USDT']['realised_profit'] -= price*amount*self.fee #扣除手续费
        self.account['USDT']['fee'] += price*amount*self.fee
        self.account[symbol]['fee'] += price*amount*self.fee

        if cover_amount > 0: #先平仓
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  #利润
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
                    
    
    def Buy(self, symbol, price, amount):
        self.Trade(symbol, 1, price, amount)
        
    def Sell(self, symbol, price, amount):
        self.Trade(symbol, -1, price, amount)
        
    def Update(self, close_price): #对资产进行更新
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)

首先我们回测下TRX平衡策略的表现,TRX在这一轮的熊市中的最大回撤相对是很小的,因此有一定的特殊性。数据选择2021年至今的5minK线,初始资金为1000,调整比例0.01,持仓价值2000,手续费0.0002。

TRX初始价格为0.02676U,期间最高价达到了0.18U,目前在0.08U左右,波动十分剧烈。如果一开始就跑多空网格策略,难逃做空爆仓的结果。平衡策略则问题不大。

回测最终收益4524U,已经很接近TRX在0.18的时候的收益了,杠杆低于从开始的2倍到最终低于0.4,爆仓的可能性也越来越低,期间可以有增加持仓价值的机会。但低于2000U始终不动的收益。这也是平衡策略的缺点之一。

symbol = 'TRXUSDT'
df_trx = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_trx.close.plot(figsize=(15,6),grid=True);

png

#TRX平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_trx.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx.index = pd.to_datetime(res_trx.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4524.226998288555 91.0
#收益
res_trx.profit.plot(figsize=(15,6),grid=True);

png

#实际占用杠杆
(res_trx.value/(res_trx.profit+1000)).plot(figsize=(15,6),grid=True);

png

我们再回测一下WAVES,这个币比较特殊,从开始的6U最高一度涨到60U,最终又跌回了目前8U附近。最终收益4945,远超过持币不动的收益。

symbol = 'WAVESUSDT'
df_waves = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_waves.close.plot(figsize=(15,6),grid=True);

png

#TWAVES平衡策略回测
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #用于储存中间结果
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_waves.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves.index = pd.to_datetime(res_waves.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4945.149323437233 178.0
df_waves.profit.plot(figsize=(15,6),grid=True);

png

顺便回测下网格策略的表现,网格间距为0.01,网格价值为10。在接近10倍涨幅的情况下,WAVES和TRX都出现了巨大的回撤,其中WAVES回撤了5000U,TRX也超过了3000U,如果初始资金较少,基本都会爆仓。

#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_waves.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) #买单价格,由于是挂单成交,也是最终的撮合价格=
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves_net.index = pd.to_datetime(res_waves_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 1678.0516101975015 70.0
res_waves_net.profit.plot(figsize=(15,6),grid=True);

png

#网格策略
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #用于储存中间结果
for row in df_trx.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx_net.index = pd.to_datetime(res_trx_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 -161.06952570521656 37.0
res_trx_net.profit.plot(figsize=(15,6),grid=True);

png

总结

这次的回测分析用的是5minK线,中间的波动并未完全模拟到,所以实际收益应该回略高一些。总体来看,平衡策略承担的风险相对较小,不怕暴涨,不用调整参数,用起来比较方便, 适合新手用户。网格策略对于初始价格的设置非常敏感,需要对行情有一定的判断,长期看,做空的风险很高。目前这一轮熊市在底部已经稳定了一段时间,很多币目前比高点还跌了90%以上,如果你对一些币看好,这是一个较好入场的时机,不妨开个平衡策略抄底,稍微加一点杠杆,获取波动和价格上涨的收益。 本次币安千团大战将提供永续平衡策略的免费使用,欢迎大家体验。


Related

More

77924998 使用策略一定比持币不动更优吗?

梦想身价八位数 怎么加入你们的千团大战?又如何使用你们的这个策略?

18539809925 币安千团大战的策略在哪里呀?

Johnny 美元加息缩表大背景下,加密货币市场还会处于熊市状态一段时间吧,这样的话最近半年内,像TRX、ETH这种是不是继续用网格收益率会高一些呢?

jackma 本文的缺点是没办法计算资费,长期持有的情况下,资费影响巨大!牛是资费通常为正,也就是说持有多仓会缴费,而且缴很多!而熊市反之。

jackma 牛逼

dewang 每种策略都是在特定场景下有效,平衡策略是逆趋势策略,持币不动约等于不加仓不补仓杠杆为本金的顺趋势策略