ডেল্টা-আরএসআই দোলক কৌশলঃ
এই কৌশলটি সম্প্রতি প্রকাশিত ডেল্টা-আরএসআই দোলককে স্বতন্ত্র সূচক হিসেবে ব্যবহারের উদাহরণ।
ডেল্টা-আরএসআই হল আরএসআই-র একটি মসৃণ সময়সূচী, যা হিস্টোগ্রামের আকারে প্রদর্শিত হয় এবং গতির সূচক হিসেবে কাজ করে ।
ট্রেডিং সিগন্যাল তৈরির জন্য তিনটি অপশনাল শর্ত রয়েছে (কিনে, বিক্রি এবং প্রস্থান সিগন্যালের জন্য পৃথকভাবে সেট করা): শূন্য-ক্রসিংঃ যখন ডি-আরএসআই নেতিবাচক থেকে ধনাত্মক মানগুলিতে শূন্য অতিক্রম করে (অন্যথায় হ্রাস) সিগন্যাল লাইন ক্রসিং: যখন ডি-আরএসআই সিগন্যাল লাইনের নিচে থেকে উপরে অতিক্রম করে (অন্যথায় হ্রাস) তখন এটি উত্থানমুখী হয়। দিক পরিবর্তনঃ যখন ডি-আরএসআই নেতিবাচক ছিল এবং উঠতে শুরু করে (অন্যথায় হ্রাস) যেহেতু ডি-আরএসআই দোলকটি আরএসআই বক্ররেখার বহুপদী ফিটিংয়ের উপর ভিত্তি করে তৈরি করা হয়েছে, তাই ফিটের মূল গড়-বর্গ ত্রুটির মাধ্যমে ট্রেড সিগন্যাল ফিল্টার করার বিকল্পও রয়েছে (নমুনা গড় দ্বারা স্বাভাবিককৃত) ।
ব্যাকটেস্ট
/*backtest start: 2022-04-29 00:00:00 end: 2022-05-28 23:59:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © tbiktag // // Delta-RSI Oscillator Strategy // // A strategy that uses Delta-RSI Oscillator (© tbiktag) as a stand-alone indicator: // https://www.tradingview.com/script/OXQVFTQD-Delta-RSI-Oscillator/ // // Delta-RSI is a smoothed time derivative of the RSI, plotted as a histogram // and serving as a momentum indicator. // // Input parameters: // RSI Length: The timeframe of the RSI that serves as an input to D-RSI. // Length: The length of the lookback frame used for local regression. // Polynomial Order: The order of the local polynomial function used to interpolate the RSI. // Signal Length: The length of a EMA of the D-RSI series that is used as a signal line. // Trade signals are generated based on three optional conditions: // - Zero-crossing: bullish when D-RSI crosses zero from negative to positive values (bearish otherwise) // - Signal Line Crossing: bullish when D-RSI crosses from below to above the signal line (bearish otherwise) // - Direction Change: bullish when D-RSI was negative and starts ascending (bearish otherwise) // // Since D-RSI oscillator is based on polynomial fitting of the RSI curve, there is also an option // to filter trade signal by means of the root mean-square error of the fit (normalized by the sample average). // //@version=4 study(title="Delta-RSI Oscillator Strategy", shorttitle = "D-RSI", overlay = true) // ---Subroutines--- matrix_get(_A,_i,_j,_nrows) => // Get the value of the element of an implied 2d matrix //input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _i :: integer: row number // _j :: integer: column number // _nrows :: integer: number of rows in the implied 2d matrix array.get(_A,_i+_nrows*_j) matrix_set(_A,_value,_i,_j,_nrows) => // Set a value to the element of an implied 2d matrix //input: // _A :: array, changed on output: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _value :: float: the new value to be set // _i :: integer: row number // _j :: integer: column number // _nrows :: integer: number of rows in the implied 2d matrix array.set(_A,_i+_nrows*_j,_value) transpose(_A,_nrows,_ncolumns) => // Transpose an implied 2d matrix // input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _nrows :: integer: number of rows in _A // _ncolumns :: integer: number of columns in _A // output: // _AT :: array: pseudo 2d matrix with implied dimensions: _ncolums x _nrows var _AT = array.new_float(_nrows*_ncolumns,0) for i = 0 to _nrows-1 for j = 0 to _ncolumns-1 matrix_set(_AT, matrix_get(_A,i,j,_nrows),j,i,_ncolumns) _AT multiply(_A,_B,_nrowsA,_ncolumnsA,_ncolumnsB) => // Calculate scalar product of two matrices // input: // _A :: array: pseudo 2d matrix // _B :: array: pseudo 2d matrix // _nrowsA :: integer: number of rows in _A // _ncolumnsA :: integer: number of columns in _A // _ncolumnsB :: integer: number of columns in _B // output: // _C:: array: pseudo 2d matrix with implied dimensions _nrowsA x _ncolumnsB var _C = array.new_float(_nrowsA*_ncolumnsB,0) int _nrowsB = _ncolumnsA float elementC= 0.0 for i = 0 to _nrowsA-1 for j = 0 to _ncolumnsB-1 elementC := 0 for k = 0 to _ncolumnsA-1 elementC := elementC + matrix_get(_A,i,k,_nrowsA)*matrix_get(_B,k,j,_nrowsB) matrix_set(_C,elementC,i,j,_nrowsA) _C vnorm(_X,_n) => //Square norm of vector _X with size _n float _norm = 0.0 for i = 0 to _n-1 _norm := _norm + pow(array.get(_X,i),2) sqrt(_norm) qr_diag(_A,_nrows,_ncolumns) => //QR Decomposition with Modified Gram-Schmidt Algorithm (Column-Oriented) // input: // _A :: array: pseudo 2d matrix _A = [[column_0],[column_1],...,[column_(n-1)]] // _nrows :: integer: number of rows in _A // _ncolumns :: integer: number of columns in _A // output: // _Q: unitary matrix, implied dimenstions _nrows x _ncolumns // _R: upper triangular matrix, implied dimansions _ncolumns x _ncolumns var _Q = array.new_float(_nrows*_ncolumns,0) var _R = array.new_float(_ncolumns*_ncolumns,0) var _a = array.new_float(_nrows,0) var _q = array.new_float(_nrows,0) float _r = 0.0 float _aux = 0.0 //get first column of _A and its norm: for i = 0 to _nrows-1 array.set(_a,i,matrix_get(_A,i,0,_nrows)) _r := vnorm(_a,_nrows) //assign first diagonal element of R and first column of Q matrix_set(_R,_r,0,0,_ncolumns) for i = 0 to _nrows-1 matrix_set(_Q,array.get(_a,i)/_r,i,0,_nrows) if _ncolumns != 1 //repeat for the rest of the columns for k = 1 to _ncolumns-1 for i = 0 to _nrows-1 array.set(_a,i,matrix_get(_A,i,k,_nrows)) for j = 0 to k-1 //get R_jk as scalar product of Q_j column and A_k column: _r := 0 for i = 0 to _nrows-1 _r := _r + matrix_get(_Q,i,j,_nrows)*array.get(_a,i) matrix_set(_R,_r,j,k,_ncolumns) //update vector _a for i = 0 to _nrows-1 _aux := array.get(_a,i) - _r*matrix_get(_Q,i,j,_nrows) array.set(_a,i,_aux) //get diagonal R_kk and Q_k column _r := vnorm(_a,_nrows) matrix_set(_R,_r,k,k,_ncolumns) for i = 0 to _nrows-1 matrix_set(_Q,array.get(_a,i)/_r,i,k,_nrows) [_Q,_R] pinv(_A,_nrows,_ncolumns) => //Pseudoinverse of matrix _A calculated using QR decomposition // Input: // _A:: array: implied as a (_nrows x _ncolumns) matrix _A = [[column_0],[column_1],...,[column_(_ncolumns-1)]] // Output: // _Ainv:: array implied as a (_ncolumns x _nrows) matrix _A = [[row_0],[row_1],...,[row_(_nrows-1)]] // ---- // First find the QR factorization of A: A = QR, // where R is upper triangular matrix. // Then _Ainv = R^-1*Q^T. // ---- [_Q,_R] = qr_diag(_A,_nrows,_ncolumns) _QT = transpose(_Q,_nrows,_ncolumns) // Calculate Rinv: var _Rinv = array.new_float(_ncolumns*_ncolumns,0) float _r = 0.0 matrix_set(_Rinv,1/matrix_get(_R,0,0,_ncolumns),0,0,_ncolumns) if _ncolumns != 1 for j = 1 to _ncolumns-1 for i = 0 to j-1 _r := 0.0 for k = i to j-1 _r := _r + matrix_get(_Rinv,i,k,_ncolumns)*matrix_get(_R,k,j,_ncolumns) matrix_set(_Rinv,_r,i,j,_ncolumns) for k = 0 to j-1 matrix_set(_Rinv,-matrix_get(_Rinv,k,j,_ncolumns)/matrix_get(_R,j,j,_ncolumns),k,j,_ncolumns) matrix_set(_Rinv,1/matrix_get(_R,j,j,_ncolumns),j,j,_ncolumns) // _Ainv = multiply(_Rinv,_QT,_ncolumns,_ncolumns,_nrows) _Ainv norm_rmse(_x, _xhat) => // Root Mean Square Error normalized to the sample mean // _x. :: array float, original data // _xhat :: array float, model estimate // output // _nrmse:: float float _nrmse = 0.0 if array.size(_x) != array.size(_xhat) _nrmse := na else int _N = array.size(_x) float _mse = 0.0 for i = 0 to _N-1 _mse := _mse + pow(array.get(_x,i) - array.get(_xhat,i),2)/_N _xmean = array.sum(_x)/_N _nrmse := sqrt(_mse) /_xmean _nrmse diff(_src,_window,_degree) => // Polynomial differentiator // input: // _src:: input series // _window:: integer: wigth of the moving lookback window // _degree:: integer: degree of fitting polynomial // output: // _diff :: series: time derivative // _nrmse:: float: normalized root mean square error // // Vandermonde matrix with implied dimensions (window x degree+1) // Linear form: J = [ [z]^0, [z]^1, ... [z]^degree], with z = [ (1-window)/2 to (window-1)/2 ] var _J = array.new_float(_window*(_degree+1),0) for i = 0 to _window-1 for j = 0 to _degree matrix_set(_J,pow(i,j),i,j,_window) // Vector of raw datapoints: var _Y_raw = array.new_float(_window,na) for j = 0 to _window-1 array.set(_Y_raw,j,_src[_window-1-j]) // Calculate polynomial coefficients which minimize the loss function _C = pinv(_J,_window,_degree+1) _a_coef = multiply(_C,_Y_raw,_degree+1,_window,1) // For first derivative, approximate the last point (i.e. z=window-1) by float _diff = 0.0 for i = 1 to _degree _diff := _diff + i*array.get(_a_coef,i)*pow(_window-1,i-1) // Calculates data estimate (needed for rmse) _Y_hat = multiply(_J,_a_coef,_window,_degree+1,1) float _nrmse = norm_rmse(_Y_raw,_Y_hat) [_diff,_nrmse] /// --- main --- degree = input(title="Polynomial Order", group = "Model Parameters:", inline = "linepar1", type = input.integer, defval=2, minval = 1) rsi_l = input(title = "RSI Length", group = "Model Parameters:", inline = "linepar1", type = input.integer, defval = 21, minval = 1, tooltip="The period length of RSI that is used as input.") window = input(title="Length ( > Order)", group = "Model Parameters:", inline = "linepar2", type = input.integer, defval=21, minval = 2) signalLength = input(title="Signal Length", group = "Model Parameters:", inline = "linepar2", type=input.integer, defval=9, tooltip="The signal line is a EMA of the D-RSI time series.") islong = input(title = "Buy", group = "Show Signals:", inline = "lineent",type = input.bool, defval = true) isshort = input(title = "Sell", group = "Show Signals:", inline = "lineent", type = input.bool, defval= true) showendlabels = input(title = "Exit", group = "Show Signals:", inline = "lineent", type = input.bool, defval= true) buycond = input(title="Buy", group = "Entry and Exit Conditions:", inline = "linecond",type = input.string, defval="Zero-Crossing", options=["Zero-Crossing", "Signal Line Crossing","Direction Change"]) sellcond = input(title="Sell", group = "Entry and Exit Conditions:", inline = "linecond",type = input.string, defval="Zero-Crossing", options=["Zero-Crossing", "Signal Line Crossing","Direction Change"]) endcond = input(title="Exit", group = "Entry and Exit Conditions:", inline = "linecond",type = input.string, defval="Zero-Crossing", options=["Zero-Crossing", "Signal Line Crossing","Direction Change"]) usenrmse = input(title = "", group = "Filter by Means of Root-Mean-Square Error of RSI Fitting:", inline = "linermse",type = input.bool, defval = false) rmse_thrs = input(title = "RSI fitting Error Threshold, %", type = input.float, group = "Filter by Means of Root-Mean-Square Error of RSI Fitting:", inline = "linermse", defval = 10, minval = 0.0) /100 src = rsi(close,rsi_l) [drsi,nrmse] = diff(src,window,degree) signalline = ema(drsi, signalLength) // Conditions and filters filter_rmse = usenrmse?nrmse<rmse_thrs:true dirchangeup = (drsi>drsi[1]) and (drsi[1]<drsi[2]) and drsi[1]<0.0 dirchangedw = (drsi<drsi[1]) and (drsi[1]>drsi[2]) and drsi[1]>0.0 crossup = crossover(drsi,0.0) crossdw = crossunder(drsi,0.0) crosssignalup = crossover(drsi,signalline) crosssignaldw = crossunder(drsi,signalline) //Signals golong = (buycond=="Direction Change"?dirchangeup:(buycond=="Zero-Crossing"?crossup:crosssignalup)) and filter_rmse goshort= (sellcond=="Direction Change"?dirchangedw:(sellcond=="Zero-Crossing"?crossdw:crosssignaldw)) and filter_rmse endlong = (endcond=="Direction Change"?dirchangedw:(endcond=="Zero-Crossing"?crossdw:crosssignaldw)) and filter_rmse endshort= (endcond=="Direction Change"?dirchangeup:(endcond=="Zero-Crossing"?crossup:crosssignalup)) and filter_rmse plotshape((golong and islong) ? low : na, location=location.belowbar, style=shape.labelup, color=#2E7C13, size=size.small, title='Buy') plotshape((goshort and isshort) ? high: na, location=location.abovebar, style=shape.labeldown, color=#BF217C, size=size.small, title='Sell') plotshape((showendlabels and endlong and islong) ? high: na, location=location.abovebar, style=shape.xcross, color=#2E7C13, size=size.tiny, title='Exit Long') plotshape((showendlabels and endshort and isshort) ? low : na, location=location.belowbar, style=shape.xcross, color=#BF217C, size=size.tiny, title='Exit Short') alertcondition(golong, title='Long Signal', message='D-RSI: Long Signal') alertcondition(goshort, title='Short Signal', message='D-RSI: Short Signal') alertcondition(endlong, title='Exit Long Signal', message='D-RSI: Exit Long') alertcondition(endshort, title='Exit Short Signal', message='D-RSI: Exit Short') if golong strategy.entry("Enter Long", strategy.long) else if goshort strategy.entry("Enter Short", strategy.short)