Dieser Artikel stellt eine quantitative Handelsstrategie vor, die den einfachen gleitenden Durchschnitt (SMA) und den adaptiven gleitenden Durchschnitt (ALMA) kombiniert.
I. Strategieprinzip
Der Kern dieser Strategie ist die Kombination von SMA und ALMA mit unterschiedlichen Parameter-Einstellungen. SMA ist ein sehr häufiger Trend-folgende Indikator, der die Richtung und Dynamik des Trends anzeigt, indem der arithmetische Mittelwert der Schlusskurs über einen Zeitraum berechnet wird.
Die Strategie berechnet zunächst drei SMAs, die jeweils kurzfristige, mittelfristige und langfristige Trends darstellen. Gleichzeitig berechnet sie drei ALMAs, um die gleitenden Durchschnitte in verschiedenen Zeitrahmen darzustellen. Die Crossovers zwischen SMA und ALMA bilden mehrere Indizesätze. Wenn die kurzfristige SMA über die mittelfristige SMA überschreitet, wird ein Kaufsignal generiert. Wenn die kurzfristige SMA unter die mittelfristige SMA überschreitet, wird ein Verkaufssignal generiert. Mit den anpassbaren Parametern von ALMA können die Signale schneller auf den Markt reagieren.
Darüber hinaus wird der Relative Strength Index (RSI) eingeführt, um zu helfen, überkaufte und überverkaufte Bedingungen zu identifizieren. Wenn der RSI über der Überkaufsschwelle liegt, gilt der Markt als überkauft. In diesem Fall können die SMA und ALMA, auch wenn sie Kaufsignale erzeugen, irreführend sein. Wenn der RSI niedriger ist als die Überverkaufslinie, können Verkaufssignale aus den Indikatoren Rebounds verpassen.
Durch die umfassende Nutzung der Parameter-Einstellungen von SMA, ALMA und RSI sowie der Kreuzkombinationen zwischen Indikatoren verschiedener Parameter können relativ empfindliche Handelsstrategie-Signale gebildet werden.
II. Vorteile der Strategie
Der größte Vorteil dieser Strategie ist die flexible Kombination und Anwendung von Indikatorparametern. Sowohl SMA als auch ALMA sind flexibel bei der Anpassung von Parametern, um verschiedene Arten von gleitenden Durchschnitten darzustellen. Der RSI kann auch die Häufigkeit der Signale durch Anpassung von Parametern steuern. Die Kombination dieser Indikatoren ergänzt sich gegenseitig und bildet Handelssignale, die den Zeitpunkt der Einträge optimieren können.
Verglichen mit einem einzelnen SMA-Indikator erhöht ALMA die Empfindlichkeit gegenüber Marktveränderungen und kann schneller auf Trendumkehrungen reagieren. Außerdem vermeidet das Hilfs-RSI-Urteil, blind den Signalen der gleitenden Durchschnitte zu folgen. Daher hat diese Strategie insgesamt eine relativ starke Anpassungsfähigkeit und Optimierungsfähigkeit.
Ein weiterer Vorteil ist die Vielfalt der Signalquellen der Strategie. Die Wechselwirkungen zwischen SMAs und ALMAs in verschiedenen Zeitrahmen liefern mehrschichtige Referenzen für die Strategie. Dies kann zu einem gewissen Grad zufälliges Marktgeräusch filtern und die Signale zuverlässiger machen.
Im Allgemeinen verfügt diese Strategie über flexible Parameter und erzeugt stabile Signale, was sie für den algorithmischen Handel mit verschiedenen Produkten geeignet macht.
III. Potenzielle Risiken
Obwohl diese Strategie gewisse Vorteile hat, sind bei der praktischen Anwendung noch einige Risiken zu beachten.
Erstens sind Überoptimierungsprobleme durch Indikator-Einstellungen verursacht. SMA, ALMA und RSI sind frei einstellbar, aber eine unsachgemäße Abstimmung kann zu Überoptimierung und der Unfähigkeit, sich an langfristige strukturelle Veränderungen auf dem Markt anzupassen, führen. Dies erfordert vorsichtige Parameter-Einstellungen, die auf den Eigenschaften verschiedener Produkte basieren, anstatt nur kurzfristige Ergebnisse zu erzielen.
Zweitens können die Strategie-Signale verzögert sein. Obwohl ALMA schneller als SMA reagiert, gibt es immer noch eine gewisse Verzögerung. In schnell wechselnden Märkten kann dies dazu führen, dass der optimale Einstiegszeitpunkt verpasst wird. Hier können wir einige führende Indikatoren kombinieren, um zu optimieren.
Schließlich müssen wir auf die widersprüchlichen Signale mehrerer Indikatoren achten. Zu bestimmten Zeiten können verschiedene Indikatoren widersprüchliche Anhaltspunkte geben.
Zusammenfassend lässt sich sagen, dass diese Strategie nicht perfekt ist und in der Praxis immer noch eine kontinuierliche Anpassung und Optimierung erfordert.
IV. Zusammenfassung
In diesem Artikel haben wir detailliert eine quantitative Handelsstrategie eingeführt, die SMA, ALMA und RSI kombiniert. Durch flexible Kombinationen der Indikatoren bildet sie Signale, die für die Märkte sensibel sind. Im Vergleich zu einzelnen Indikatoren hat sie eine stärkere Anpassungsfähigkeit und Geräuschfilterungsfähigkeiten. Aber wir müssen auch auf potenzielle Probleme wie Überoptimierung, Signalverzögerung und Urteilsfehler achten. Insgesamt ist diese Strategie vernünftig konstruiert und kann durch kontinuierliche Optimierung stabile algorithmische Handelssignale generieren.
/*backtest start: 2023-09-06 00:00:00 end: 2023-09-13 00:00:00 period: 5m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //The plotchar UP/DOWN Arrows is the crossover of the fastest MA and fastest IIR MAs // //The dots at the bottom are the two simple averages crossing over // //The count over/under the candles is the count of bars that the SMAs on their //respective resolution are fanning out. // //The colored background indicates a squeeze, lime=kinda tight : green=very tight squeeze. based on the 3 IIRs // //To answer my own question in a forum, looking at the code, i couldn't figure out how to get it from another timeframe //and run the same calculations with the same results. My answer in the end was to scale the chosen MA length //in the corresponding CurrentPeriod/ChosenMAPeriod proportion. This results in the same line in the same place when browsing through the //different time resolutions. Somebody might find this invaluable // //The counts are for MA's fanning out, or going parabolic. Theres IIRs, Almas, one done of the other. A lot. //The arrows above and below bars are from standard RSI numbers for OB/OS // //The IIRs changes color depending on their slope, which can be referenced easily with a variable. // //The backgrond on a bar-by-bar basis is colored when 2 sets of moving averages are in a squeeze, aka //when price is consolidating. // //This aims to help the trader combine conditions and entry criteria of the trade and explore these options visually. //They detail things from all time-frames on the current one. I prefer it because of the fractal nature of price-action, both large and small, //either yesterday or last year. For best results, go long in short-term trades when the long-term trend is also up. //and other profitable insights. This is also a great example of an automation algorith. // //The pretty ribbon is my script called 'Trading With Colors'. Use them together for fanciest results. 55/233 is my Fib Cross (golden/death) Compare it to the classic 50/200 if //you get bored. I believe it simply works better, at least for Crypto. // //Evidently, I am a day-trader. But this yields higher profits on larger time-frames anyways, so do play around with it. Find what works for you. //Thanks and credit for code snippets goes to: //matryskowal //ChrisMoody, probably twice //Alex Orekhov (everget) //author=LucF and midtownsk8rguy, for PineCoders //If you use code from this, real quick search for perhaps the original and give them a shoutout too. I may have missed something //Author: Sean Duffy //@version=4 strategy(title = "Combination Parabolic MA/IIR/ALMA Strategy", shorttitle = "MA-QuickE", overlay = true, backtest_fill_limits_assumption = 0, default_qty_type = strategy.cash, default_qty_value = 1000, initial_capital = 1000, currency = currency.USD, linktoseries = true) // calc_on_order_fills = true, // calc_on_every_tick = true, // Input Variables showFIBMAs = input(false, type=input.bool, title="═══════════════ Show Fibby MAs ═══════════════") maRes = input(960, type=input.integer, title="MA-Cross Resolution") mal1 = input(8, type=input.integer, title="MA#1 Length") mal2 = input(13, type=input.integer, title="MA#2 Length") mal3 = input(34, type=input.integer, title="MA#3 Length") loosePercentClose = input(1.1, type=input.float, title="SMA LooseSqueeze Percent") showIIRs = input(false, type=input.bool, title="═══════════════════ Show IIRs ═══════════════════") iirRes = input(60, type=input.integer, title="IIR Resolution") percentClose = input(title="IIR Squeeze PercentClose", type=input.float, defval=.8) iirlength1 = input(title="IIR Length 1", type=input.integer, defval=34) iirlength2 = input(title="IIR Length 2", type=input.integer, defval=144)//input(title="ATR Period", type=input.integer, defval=1) iirlength3 = input(title="IIR Length 3", type=input.integer, defval=720)//input(title="ATR Period", type=input.integer, defval=1) showIIR1 = input(true, type=input.bool, title="Show IIR1") showIIR2 = input(true, type=input.bool, title="Show IIR2") showIIR3 = input(true, type=input.bool, title="Show IIR3") showCounts = input(true, type=input.bool, title="═════════════ Show Parabolic MA Counts ════════════") showSignals = input(true, type=input.bool, title="══════════════ Show Buy/Sell Signals ══════════════") showBackground = input(true, type=input.bool, title="══════════════ Show Background Colors ══════════════") //runStrategy = input(true, type=input.bool, title="══════════════ Run Strategy ══════════════") debug = input(false, type=input.bool, title="══════════════ Show Debug ══════════════") barLookbackPeriod = input(title="══ Bar Lookback Period ══", type=input.integer, defval=5) percentageLookbackPeriod = input(title="══ Percentage Lookback Period ══", type=input.integer, defval=1) bullcolor = color.green bearcolor = color.red color bgcolor = na var bool slope1Green = na var bool slope2Green = na var bool slope3Green = na var bool buySignal = na var bool sellSignal = na var bool bigbuySignal = na var bool bigsellSignal = na bool smbuySignal = false bool smsellSignal = false var bool insqueeze = na var bool intightsqueeze = na var bool infastsqueeze = na var bool awaitingEntryIn = false // My counting variables var int count1 = 0 var float madist1 = 0 var int count2 = 0 var float madist2 = 0 var int sinceSmSignal = 0 var entryPrice = 0.0 var entryBarIndex = 0 var stopLossPrice = 0.0 // var updatedEntryPrice = 0.0 // var alertOpenPosition = false // var alertClosePosition = false // var label stopLossPriceLabel = na // var line stopLossPriceLine = na positionType = "LONG" // Strategy type, and the only current option hasOpenPosition = strategy.opentrades != 0 hasNoOpenPosition = strategy.opentrades == 0 strategyClose() => if (hasOpenPosition) if positionType == "LONG" strategy.close("LONG", when=true) else strategy.close("SHORT", when=true) strategyOpen() => if (hasNoOpenPosition) if positionType == "LONG" strategy.entry("LONG", strategy.long, when=true) else strategy.entry("SHORT", strategy.short, when=true) checkEntry() => buysignal = false if (hasNoOpenPosition) strategyOpen() buysignal := true // if (slope1Green and (trend1Green or trend2Green) and awaitingEntryIn and hasNoOpenPosition) // strategyOpen() // buysignal := true buysignal checkExit() => sellsignal = false // if (trend1Green == false and trend2Green == false) // to later have quicker exit strategy // sellsignal := true // strategyClose() if (hasOpenPosition) sellsignal := true strategyClose() sellsignal multiplier(_adjRes, _adjLength) => // returns adjusted length multiplier = _adjRes/timeframe.multiplier round(_adjLength*multiplier) //reset the var variables before new calculations buySignal := false sellSignal := false smbuySignal := false smsellSignal := false bigbuySignal := false bigsellSignal := false ma1 = sma(close, multiplier(maRes, mal1)) ma2 = sma(close, multiplier(maRes, mal2)) ma3 = sma(close, multiplier(maRes, mal3)) madist1 := abs(ma1 - ma2) madist2 := abs(ma1 - ma3) // check if MA's are fanning/going parabolic if (ma1 >= ma2 and ma2 >= ma3 and madist1[0] > madist1[1]) //and abs(dataB - dataC >= madist2) // dataA must be higher than b, and distance between gaining, same with C count1 := count1 + 1 else count1 := 0 if (ma1 <= ma2 and ma2 <= ma3 and madist1[0] > madist1[1]) //<= madist2 and dataB <= dataC) //and abs(dataB - dataC >= madist2) // dataA must be higher than b, and distance between gaining, same with C count2 := count2 + 1 else count2 := 0 crossoverAB = crossover(ma1, ma2) crossunderAB = crossunder(ma1, ma2) plot(showFIBMAs ? ma1 : na, linewidth=3) plot(showFIBMAs ? ma2 : na) plot(showFIBMAs ? ma3 : na) // Fast Squeese Check WORK IN PROGRESS // float singlePercent = close / 100 if max(madist1, madist2) <= singlePercent*loosePercentClose bgcolor := color.yellow infastsqueeze := true else infastsqueeze := false // IIR MOVING AVERAGE f(a) => a[0] // fixes mutable error iirma(iirlength, iirsrc) => cf = 2*tan(2*3.14159*(1/iirlength)/2) a0 = 8 + 8*cf + 4*pow(cf,2) + pow(cf,3) a1 = -24 - 8*cf + 4*pow(cf,2) + 3*pow(cf,3) a2 = 24 - 8*cf - 4*pow(cf,2) + 3*pow(cf,3) a3 = -8 + 8*cf - 4*pow(cf,2) + pow(cf,3) //---- c = pow(cf,3)/a0 d0 = -a1/a0 d1 = -a2/a0 d2 = -a3/a0 //---- out = 0. out := nz(c*(iirsrc + iirsrc[3]) + 3*c*(iirsrc[1] + iirsrc[2]) + d0*out[1] + d1*out[2] + d2*out[3],iirsrc) f(out) iirma1 = iirma(multiplier(iirRes, iirlength1), close) iirma2 = iirma(multiplier(iirRes, iirlength2), close) iirma3 = iirma(multiplier(iirRes, iirlength3), close) // adjusts length for current resolution now, length is lengthened/shortened accordingly, upholding exact placement of lines // iirmaD1 = security(syminfo.tickerid, tostring(iirRes), iirma1, barmerge.gaps_on, barmerge.lookahead_on) // iirmaD2 = security(syminfo.tickerid, tostring(iirRes), iirma2, barmerge.gaps_on, barmerge.lookahead_on) // iirmaD3 = security(syminfo.tickerid, tostring(iirRes), iirma3, barmerge.gaps_on, barmerge.lookahead_on) slope1color = slope1Green ? color.lime : color.blue slope2color = slope2Green ? color.lime : color.blue slope3color = slope3Green ? color.lime : color.blue plot(showIIR1 and showIIRs ? iirma1 : na, title="IIR1", color=slope1color, linewidth=2, transp=30) plot(showIIR2 and showIIRs ? iirma2 : na, title="IIR2", color=slope2color, linewidth=3, transp=30) plot(showIIR3 and showIIRs ? iirma3 : na, title="IIR3", color=slope3color, linewidth=4, transp=30) // checks slope of IIRs to create a boolean variable and and color it differently if (iirma1[0] >= iirma1[1]) slope1Green := true else slope1Green := false if (iirma2[0] >= iirma2[1]) slope2Green := true else slope2Green := false if (iirma3[0] >= iirma3[1]) slope3Green := true else slope3Green := false // calculate space between IIRs and then if the price jumps above both //float singlePercent = close / 100 // = a single percent var float distIIR1 = na var float distIIR2 = na distIIR1 := abs(iirma1 - iirma2) distIIR2 := abs(iirma1 - iirma3) if (distIIR1[0] < percentClose*singlePercent and close[0] >= iirma1[0]) if close[0] >= iirma2[0] and close[0] >= iirma3[0] bgcolor := color.green insqueeze := true intightsqueeze := true else bgcolor := color.lime insqueeze := true intightsqueeze := false else insqueeze := false intightsqueeze := false // if (true)//sinceSmSignal > 0) // cutting down on fastest MAs noise // sinceSmSignal := sinceSmSignal + 1 // if (crossoverAB) // //checkEntry() // //smbuySignal := true // sinceSmSignal := 0 // if (crossunderAB) // and all NOT greennot (slope1Green and slope2Green and slope3Green) // //checkExit() // //smsellSignal := true // sinceSmSignal := 0 // else // sinceSmSignal := sinceSmSignal + 1 f_draw_infopanel(_x, _y, _line, _text, _color)=> _rep_text = "" for _l = 0 to _line _rep_text := _rep_text + "\n" _rep_text := _rep_text + _text var label _la = na label.delete(_la) _la := label.new( x=_x, y=_y, text=_rep_text, xloc=xloc.bar_time, yloc=yloc.price, color=color.black, style=label.style_labelup, textcolor=_color, size=size.normal) posx = timenow + round(change(time)*60) posy = highest(50) // CONSTRUCTION ZONE // TODO: program way to eliminate noise and false signals // MAYBEDO: program it to differentiate between a moving average bump and a cross // I think the best way would be to calculate the tangent line... OR // Take the slope of both going back a couple bars and if it's close enough, its a bounce off // and an excellent entry signal // program in quickest exit, 2 bars next to eachother both closing under, as to avoid a single wick from // prompting to close the trade // Some other time, have it move SMA up or down depending on whether trending up or down. Then use those MA crosses //THIS CHECKS THE SLOPE FROM CURRENT PRICE TO BACK 10 BARS checkSlope(_series) => (_series[0]/_series[10])*100 // it now returns it as a percentage doNewX = input(true, type=input.bool, title="══════════ Show misc MA Cross Strategy ══════════") iirX = input(13, title="IIRx Length: ", type=input.integer) iirXperiod = input(21, title="IIRx Period/TF: ", type=input.integer) iirX2 = input(144, title="IIRx2 Length: ", type=input.integer) iirX2period = input(233, title="IIRx2 Period/TF: ", type=input.integer) //15 almaXperiod = input(defval=21, title="Alma of IIR1 Period: ", type=input.integer) almaXalpha = input(title="Alma Alpha Value: ", defval=.99, maxval=.99, type=input.float) almaXsigma = input(title="Alma Sigma Value: ", defval=8, type=input.float) iirmaOTF = iirma(multiplier(iirXperiod, iirX), close) iirma2OTF = iirma(multiplier(iirX2period, iirX2), close) smaOTF = alma(iirmaOTF, almaXperiod, almaXalpha, almaXsigma) // maybe dont touch, its precise // I took the ALMA of the IIRMA, and i hope thats not cheating ;) // I could have removed this. the multiplier function adjusts the length to fit the current timeframe while displaying the same // smaXOTF = security(syminfo.tickerid, smaXperiod, smaOTF, barmerge.gaps_on, barmerge.lookahead_on) // iirmaXOTF = security(syminfo.tickerid, iirXperiod, iirmaOTF, barmerge.gaps_on, barmerge.lookahead_on) // iirmaX2OTF = security(syminfo.tickerid, iirX2period, iirma2OTF, barmerge.gaps_on, barmerge.lookahead_on) plot(doNewX ? smaOTF : na, title="FastMA X-Over : ", color=color.blue, linewidth=1, transp=40) plot(doNewX ? iirmaOTF : na, title="IIR MAx : ", color=color.purple, linewidth=1, transp=30) plot(doNewX ? iirma2OTF : na, title="IIR MAx : ", color=color.purple, linewidth=2, transp=20) iirma2Up = iirma2OTF[0] > iirma2OTF[1] // just another slope up/down variable. //calculate spaces between averages distiiralma = abs(iirmaOTF - smaOTF) crossoverFast = crossover(iirmaOTF[0], smaOTF[0]) // and (iirmaOTF[1] <= smaOTF[1]) crossunderFast = crossunder(iirmaOTF[0], smaOTF[0]) // and (iirmaOTF[1] >= smaOTF[1]) if (crossoverFast and iirma2Up == true) // and (count1 != 0))// or close[0] < (lowest(barLookbackPeriod) + singlePercent*3))) // must be at most a few percent up from a recent low. Avoid buying highs :P buySignal := true strategyOpen() // if (slope1Green and slope2Green and slope3Green and infastsqueeze == false) // checkEntry() if (crossunderFast) sellSignal := true checkExit() // I feel like I didn't cite the OG author for this panel correctly. I hope I did, but there are extentions of his/her work in multiple places. // I could have gotten it confused. if (debug) f_draw_infopanel(posx, posy, 18, "distiiralma from IIR: " + tostring(distiiralma), color.lime) //f_draw_infopanel(posx, posy, 16, "distiirs: " + tostring(distiirX1), color.lime) f_draw_infopanel(posx, posy, 14, "Value of iirmaOTF: " + tostring(iirmaOTF), color.lime) f_draw_infopanel(posx, posy, 6, "slope X: " + tostring(abs(100 - checkSlope(iirmaOTF))), color.lime) f_draw_infopanel(posx, posy, 12, "value of smaOTF: " + tostring(smaOTF), color.lime) f_draw_infopanel(posx, posy, 6, "slopeAlma: " + tostring(abs(100 - checkSlope(smaOTF))), color.lime) f_draw_infopanel(posx, posy, 2, "slopeIIR2 " + tostring(abs(100 - checkSlope(iirma2OTF))), color.lime) f_draw_infopanel(posx, posy, 2, "slopeIIR2 " + tostring(abs(100 - checkSlope(iirma2OTF))), color.lime) // I kept this separate because it discludes the calculations. Its hard to hold a train of thought while fishing for the right section bgcolor(showBackground ? bgcolor : na) plotshape(showSignals ? buySignal : na, location=location.bottom, style=shape.circle, text="", size=size.tiny, color=color.blue, transp=60) plotshape(showSignals ? sellSignal : na, location=location.bottom, style=shape.circle, text="", size=size.tiny, color=color.red, transp=60) plotchar(showSignals and smbuySignal, title="smBuy", location=location.belowbar, char='↑', size=size.tiny, color=color.green, transp=0) plotchar(showSignals and smsellSignal, title="smSell", location=location.abovebar, char='↓', size=size.tiny, color=color.orange, transp=0) // can not display a variable. Can only match the count to a corresponding plotchar // to display a non-constant variable, use the debug box, which was so kindly offered up by our community. plotchar(showCounts and count1==1, title='', char='1', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==2, title='', char='2', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==3, title='', char='3', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==4, title='', char='4', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==5, title='', char='5', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==6, title='', char='6', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==7, title='', char='7', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==8, title='', char='8', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==9, title='', char='9', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1>=10, title='', char='$', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count2==1, title='', char='1', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==2, title='', char='2', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==3, title='', char='3', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==4, title='', char='4', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==5, title='', char='5', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==6, title='', char='6', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==7, title='', char='7', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==8, title='', char='8', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==9, title='', char='9', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2>=10, title='', char='$', location=location.abovebar, color=#e91e63, transp=0) showRSIind = input(true, type=input.bool, title="═══════════════════ Show RSI Arrows ═══════════════════") // Get user input rsiSource = input(title="RSI Source", type=input.source, defval=close) rsiLength = input(title="RSI Length", type=input.integer, defval=14) rsiOverbought = input(title="RSI Overbought Level", type=input.integer, defval=80) rsiOversold = input(title="RSI Oversold Level", type=input.integer, defval=20) // Get RSI value rsiValue = rsi(rsiSource, rsiLength) isRsiOB = rsiValue >= rsiOverbought isRsiOS = rsiValue <= rsiOversold // Plot signals to chart plotshape(isRsiOB, title="Overbought", location=location.abovebar, color=color.red, transp=0, style=shape.triangledown) plotshape(isRsiOS, title="Oversold", location=location.belowbar, color=color.green, transp=0, style=shape.triangleup) //reset the var variables before new calculations buySignal := false sellSignal := false smbuySignal := false smsellSignal := false bigbuySignal := false bigsellSignal := false