Diese Strategie nutzt die dynamischen oberen und unteren Bands von Bollinger Bands, um lange zu gehen, wenn der Preis über das obere Band bricht und die Position zu schließen, wenn der Preis unter das untere Band fällt. Im Gegensatz zu traditionellen Breakout-Strategien mit festen Niveaus ändern sich die Bands von Bollinger Bands dynamisch basierend auf der historischen Volatilität, was es besser macht, überkaufte und überverkaufte Bedingungen zu identifizieren.
Die Strategie stützt sich hauptsächlich auf den Bollinger Bands Indikator, um Ausbrüche zu identifizieren.
Wenn der Preis über das obere Band steigt, gilt der Markt als überkauft und eine Long-Position kann eingeleitet werden.
Die Strategie erlaubt die Anpassung der Bollinger Bands-Parameter: der gleitende Durchschnittsperiode n und der Standardabweichungsmultiplikator k. Die Standardwerte sind 20 Perioden für den gleitenden Durchschnitt und 2 für den Standardabweichungsmultiplikator.
Die Strategie überprüft, ob der Schlusskurs nach jedem Handelstag über das obere Band bricht. Wenn dies der Fall ist, wird am nächsten Tag ein Long-Signal ausgelöst. Einmal lang überwacht die Strategie, ob der Preis in Echtzeit unter das untere Band bricht und schließt die Position, wenn dies der Fall ist.
Die Strategie beinhaltet auch einen gleitenden Durchschnittsfilter, der nur Kaufsignale erzeugt, wenn der Preis über der gleitenden Durchschnittslinie liegt.
Es gibt zwei Stop-Loss-Optionen: Festprozentsatz-Stop-Loss oder das Verfolgen des unteren Bandes.
Die Strategie identifiziert überkaufte/überverkaufte Bedingungen mit Bollinger Bands
/*backtest start: 2022-11-06 00:00:00 end: 2023-11-12 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 // Revision: 1 // Author: @millerrh // Strategy: // Entry: Buy when price breaks out of upper Bollinger Band // Exit: Trail a stop with the lower Bollinger Band // Conditions/Variables: // 1. Can add a filter to only take setups that are above a user-defined moving average on current timeframe and/or longer timeframe (helps avoid trading counter trend) // 2. Manually configure which dates to back test // 3. User-Configurable Bollinger Band Settings // 4. Optionally use a tighter initial stop level. Once Bollinger Band catches up, trail with lower Bollinger Band to give more breathing room. // strategy('Donchian Breakout', overlay=true, initial_capital=100000, currency='USD', default_qty_type=strategy.percent_of_equity, calc_on_every_tick = true, // default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.1) strategy('Bollinger Breakout', overlay=true, initial_capital=100000, currency='USD', default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.0, calc_on_order_fills=true) // === BACKTEST RANGE === Start = input(defval = timestamp("01 Jan 2019 06:00 +0000"), title = "Backtest Start Date", group = "backtest window") Finish = input(defval = timestamp("01 Jan 2100 00:00 +0000"), title = "Backtest End Date", group = "backtest window") // == INPUTS == // Bollinger Band Inputs bbLength = input.int(20, minval=1, group = "Bollinger Band Settings", title="Bollinger Band Length", tooltip = "Bollinger Band moving average length.") bbMultTop = input.float(2.0, minval=0.001, maxval=50, title="Standard Deviation (Top)") bbMultBot = input.float(2.0, minval=0.001, maxval=50, title="Standard Deviation (Bottom)") useTightStop = input.bool(title='Use Fixed Percentage for Initial Stop?', defval=false, group = "order entry", tooltip = "'Keep your losers small and let winners run' is the saying. This will allow you to use a tight initial stop until the lower Bollinger Band catches up.") percStop = input.int(title="Stop", defval=8, group = "order entry", inline = "perc") trigInput = input.string(title='Execute Trades On...', defval='Wick', options=['Wick', 'Close'], group = "order entry", tooltip = "Useful for comparing standing stop orders at the Bollinger Band boundary (executing on the wick) vs. waiting for candle closes prior to taking action") // Moving Average Filtering Inputs useMaFilter = input.bool(title='Use Moving Average for Filtering (Current Timeframe)?', defval=false, group = "moving average filtering", tooltip = "Signals will be ignored when price is under this moving average. The intent is to keep you out of bear periods and only buying when price is showing strength.") maType = input.string(defval='SMA', options=['EMA', 'SMA'], title='MA Type For Filtering', group = "moving average filtering") maLength = input.int(defval=50, title="Moving Average: Length", minval=1, group = "moving average filtering", inline = "1ma") ma1Color = input.color(color.new(color.green, 50), title = " Color", group = "moving average filtering", inline = "1ma") useMaFilter2 = input.bool(title='Use Moving Average for Filtering (High Timeframe)?', defval=false, group = "moving average filtering") tfSet = input.timeframe(defval="D", title="Timeframe of Moving Average", group = "moving average filtering", tooltip = "Allows you to set a different time frame for a moving average filter. Trades will be ignored when price is under this moving average. The idea is to keep your eye on the larger moves in the market and stay on the right side of the longer term trends and help you be pickier about the stocks you trade.") ma2Type = input.string(defval='SMA', options=['EMA', 'SMA'], title='MA Type For Filtering', group = "moving average filtering") ma2Length = input.int(defval=50, title="Moving Average: Length", minval=1, group = "moving average filtering", inline = "2ma") ma2Color = input.color(color.new(color.white, 50), title = " Color", group = "moving average filtering", inline = "2ma") // === THE BOLLINGER BAND === // Logic bbBasis = ta.sma(close, bbLength) bbUpper = bbBasis + bbMultTop * ta.stdev(close, bbLength) bbLower = bbBasis - bbMultBot * ta.stdev(close, bbLength) // Plotting plot(bbBasis, "Basis", color=color.new(color.white, 50)) p1 = plot(bbUpper, color=color.new(color.blue, 50), linewidth=1, title='Upper Bollinger Band') p2 = plot(bbLower, color=color.new(color.blue, 50), linewidth=1, title='Lower Bollinger Band') fill(p1, p2, title = "Background", color=color.rgb(33, 150, 243, 95)) // == FILTERING LOGIC == // Declare function to be able to swap out EMA/SMA ma(maType, src, length) => maType == 'EMA' ? ta.ema(src, length) : ta.sma(src, length) //Ternary Operator (if maType equals EMA, then do ema calc, else do sma calc) maFilter = ma(maType, close, maLength) maFilter2 = request.security(syminfo.tickerid, tfSet, ma(ma2Type, close, ma2Length)) // Plotting plot(useMaFilter ? maFilter : na, title='Trend Filter MA - CTF', color=ma1Color, linewidth=2, style=plot.style_line) plot(useMaFilter2 ? maFilter2 : na, title='Trend Filter MA - HTF', color=ma2Color, linewidth=2, style=plot.style_line) // == ENTRY AND EXIT CRITERIA == // Trigger stop based on candle close or High/Low (i.e. Wick) trigResistance = trigInput == 'Close' ? close : trigInput == 'Wick' ? high : na trigSupport = trigInput == 'Close' ? close : trigInput == 'Wick' ? low : na buySignal = trigResistance >= bbUpper buyConditions = (useMaFilter ? bbUpper > maFilter : true) and (useMaFilter2 ? bbUpper > maFilter2 : true) // == STOP AND PRICE LEVELS == // Configure initial stop level inPosition = strategy.position_size > 0 stopLevel = strategy.position_avg_price - (strategy.position_avg_price * percStop/100) posStop = stopLevel > bbLower ? stopLevel : bbLower // Check if using stop vs. not stop = useTightStop ? posStop : bbLower plot(inPosition ? stop : na, style=plot.style_linebr, color=color.new(color.red, 40), linewidth = 1, title = "Stop Levels", trackprice=false) sellSignal = trigSupport <= stop // == STRATEGY ENTRIES & EXITS == // This string of code enters and exits at the candle close if trigInput == 'Close' strategy.entry('Long', strategy.long, when=buyConditions and buySignal) strategy.close('Long', when=sellSignal) // This string of code enters and exits at the wick (i.e. with pre-set stops) if trigInput == 'Wick' strategy.entry('Long', strategy.long, stop=bbUpper, when=buyConditions) strategy.exit('Exit Long', from_entry='Long', stop=stop) strategy.cancel('Long',when= not(buyConditions)) // Resets stop level once buyConditions aren't true anymore