The 3 10.0 Oscillator Profile Reversal strategy identifies potential price reversals by calculating MACD indicators across different timeframes. It adopts a trend-following stop loss approach to pursue higher capital efficiency.
The strategy calculates SMA moving averages of 3 and 10 periods to construct fast and slow lines and the MACD indicator and signal line. When the fast line and signal line cross the zero line upward or downward, it indicates the price has reached a critical point and a reversal may occur. In addition, it also incorporates volume pressure judgment, RSI index etc. to identify reliability of reversal signals. It goes long or short when reversal signals meet certain reliability requirements.
Specifically, the strategy judges price reversals through:
When reversal signal reliability is high, the strategy adopts trend-following stop loss to pursue higher profit.
The strategy has the following advantages:
There are also some risks:
Risks can be reduced through:
The strategy can be further optimized through:
The multi timeframe MACD zero-crossing reversal strategy comprehensively considers price, volume and volatility indicators to determine entry timing through multi-indicator evaluation. It sets timely stop loss upon sufficient profitability. It can achieve good returns during reversal markets. Further improvements on machine learning and key level integration may lower risks and trading frequencies while improving profitability.
/*backtest start: 2023-02-11 00:00:00 end: 2024-02-17 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("3 10.0 Oscillator Profile Flagging", shorttitle="3 10.0 Oscillator Profile Flagging", overlay=false) signalBiasValue = input(title="Signal Bias", defval=0.26) macdBiasValue = input(title="MACD Bias", defval=0.8) shortLookBack = input( title="Short LookBack", defval=3) longLookBack = input( title="Long LookBack", defval=10.0) takeProfit = input( title="Take Profit", defval=0.8) stopLoss = input( title="Stop Loss", defval=0.75) fast_ma = ta.sma(close, 3) slow_ma = ta.sma(close, 10) macd = fast_ma - slow_ma signal = ta.sma(macd, 16) hline(0, "Zero Line", color = color.black) buyVolume = volume*((close-low)/(high-low)) sellVolume = volume*((high-close)/(high-low)) buyVolSlope = buyVolume - buyVolume[1] sellVolSlope = sellVolume - sellVolume[1] signalSlope = ( signal - signal[1] ) macdSlope = ( macd - macd[1] ) plot(macd, color=color.blue, title="Total Volume") plot(signal, color=color.orange, title="Total Volume") intrabarRange = high - low rsi = ta.rsi(close, 14) rsiSlope = rsi - rsi[1] getRSISlopeChange(lookBack) => j = 0 for i = 0 to lookBack if ( rsi[i] - rsi[ i + 1 ] ) > -5 j += 1 j getBuyerVolBias(lookBack) => j = 0 for i = 1 to lookBack if buyVolume[i] > sellVolume[i] j += 1 j getSellerVolBias(lookBack) => j = 0 for i = 1 to lookBack if sellVolume[i] > buyVolume[i] j += 1 j getVolBias(lookBack) => float b = 0.0 float s = 0.0 for i = 1 to lookBack b += buyVolume[i] s += sellVolume[i] b > s getSignalBuyerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] > signalBiasValue j += 1 j getSignalSellerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < ( 0.0 - signalBiasValue ) j += 1 j getSignalNoBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < signalBiasValue and signal[i] > ( 0.0 - signalBiasValue ) j += 1 j getPriceRising(lookBack) => j = 0 for i = 1 to lookBack if close[i] > close[i + 1] j += 1 j getPriceFalling(lookBack) => j = 0 for i = 1 to lookBack if close[i] < close[i + 1] j += 1 j getRangeNarrowing(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] < intrabarRange[i + 1] j+= 1 j getRangeBroadening(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] > intrabarRange[i + 1] j+= 1 j bool isNegativeSignalReversal = signalSlope < 0.0 and signalSlope[1] > 0.0 bool isNegativeMacdReversal = macdSlope < 0.0 and macdSlope[1] > 0.0 bool isPositiveSignalReversal = signalSlope > 0.0 and signalSlope[1] < 0.0 bool isPositiveMacdReversal = macdSlope > 0.0 and macdSlope[1] < 0.0 bool hasBearInversion = signalSlope > 0.0 and macdSlope < 0.0 bool hasBullInversion = signalSlope < 0.0 and macdSlope > 0.0 bool hasSignalBias = math.abs(signal) >= signalBiasValue bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0.0 - signalBiasValue ) bool hasSignalBuyerBias = hasSignalBias and signal > 0.0 bool hasSignalSellerBias = hasSignalBias and signal < 0.0 bool hasPositiveMACDBias = macd > macdBiasValue bool hasNegativeMACDBias = macd < ( 0.0 - macdBiasValue ) bool hasBullAntiPattern = ta.crossunder(macd, signal) bool hasBearAntiPattern = ta.crossover(macd, signal) bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 ) bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 ) // 393.60 Profit 52.26% 15m if ( hasBullInversion and rsiSlope > 1.5 and volume > 300000.0 ) strategy.entry("15C1", strategy.long, qty=10.0) strategy.exit("TPS", "15C1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss) // 356.10 Profit 51,45% 15m if ( getVolBias(shortLookBack) == false and rsiSlope > 3.0 and signalSlope > 0) strategy.entry("15C2", strategy.long, qty=10.0) strategy.exit("TPS", "15C2", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss) // 124 Profit 52% 15m if ( rsiSlope < -11.25 and macdSlope < 0.0 and signalSlope < 0.0) strategy.entry("15P1", strategy.short, qty=10.0) strategy.exit("TPS", "15P1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss) // 455.40 Profit 49% 15m if ( math.abs(math.abs(macd) - math.abs(signal)) < .1 and buyVolume > sellVolume and hasBullInversion) strategy.entry("15P2", strategy.short, qty=10.0) strategy.exit("TPS", "15P2", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss)