Esta estrategia combina principalmente las bandas de Bollinger y los indicadores RSI para juzgar las señales comerciales, que es una estrategia típica de Frankenstein.
Utilice la banda media, la banda superior y la banda inferior de las bandas de Bollinger para juzgar la tendencia del precio actual. Cuando el precio rompe la banda superior, se considera una tendencia alcista. Cuando rompe la banda inferior, se considera una tendencia bajista.
La amplitud de las bandas de Bollinger (la diferencia entre las bandas superior e inferior) puede reflejar la volatilidad actual del mercado.
El indicador RSI juzga las situaciones de sobrecompra y sobreventa. Por encima de 70 es la zona de sobrecompra y por debajo de 30 es la zona de sobreventa.
Señales comerciales específicas: (1) Señal alcista: el precio rompe la banda superior y el RSI no está sobrecomprado (RSI inferior a 70) (2) Señales bajistas: el precio rompe la banda inferior y el RSI no está sobrevendido (RSI superior a 30)
Stop loss: Para operaciones largas, stop loss cuando el RSI se rompe por debajo de 70.
Las ventajas de esta estrategia son:
La integración de múltiples indicadores proporciona información más completa y señales fiables.
Usando bandas de Bollinger para determinar la tendencia general captura los grandes movimientos.
El indicador RSI evita además riesgos innecesarios al detectar niveles locales de sobrecompra y sobreventa.
El mecanismo de stop loss es bastante estricto, lo que ayuda a reducir las pérdidas.
Esta estrategia también tiene los siguientes riesgos:
Tanto las bandas de Bollinger como el RSI pueden fallar, lo que resulta en señales comerciales incorrectas.
A pesar de tener un stop loss, los puntos de stop loss inadecuados aún pueden conducir a pérdidas importantes.
El comercio demasiado frecuente aumenta los costes de transacción y el deslizamiento.
La optimización inadecuada de los parámetros puede conducir a un sobreajuste.
Esta estrategia puede optimizarse en los siguientes aspectos:
Prueba diferentes combinaciones de parámetros para encontrar los parámetros óptimos.
Aumentar la flexibilidad de los métodos de stop loss, tales como ADDR/ATR stop loss, trailing stop loss, etc.
Añadir estrategias de dimensionamiento de posiciones, como fracción fija, Martingale, etc.
Incorporar más indicadores para filtrar las señales, como el volumen, etc.
Utilice el aprendizaje automático para la optimización de parámetros adaptativos.
Optimice el tiempo de entrada, espere las señales de confirmación antes de entrar.
En resumen, esta es una estrategia típica de Frankenstein que combina múltiples indicadores. Integra las ventajas de las bandas de Bollinger y el RSI para capturar tendencias y evitar riesgos de sobrecompra y sobreventa. Con la optimización adecuada de parámetros y la gestión de pérdidas de parada, se pueden lograr buenos resultados. Pero también tiene algunos riesgos y necesita una mayor optimización para mejorar la estabilidad. En general, la idea de la estrategia es razonable y tiene mucho margen de mejora.
/*backtest start: 2023-09-24 00:00:00 end: 2023-10-24 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © evillalobos1123 //@version=5 strategy("Villa Dinamic Pivot Supertrend Strategy", overlay=true, calc_on_every_tick = true, default_qty_type = strategy.fixed) //INPUTS ema_b = input.bool(false, "Use Simple EMA Filter", group = "Strategy Inputs") ema_b_ang = input.bool(true, "Use DEMA Angle Filter", group = "Strategy Inputs") dema_b = input.bool(true, "Use DEMA Filter", group = "Strategy Inputs") st_sig = input.bool(false, "Take Every Supertrend Signal" , group = "Strategy Inputs") take_p = input.bool(true, "Stop Loss at Supertrend", group = "Strategy Inputs") din_tp = input.bool(false, "2 Steps Take Profit", group = "Strategy Inputs") move_sl = input.bool(true, "Move SL", group = "Strategy Inputs") sl_atr = input.float(2.5, "Stop Loss ATR Multiplier", group = "Strategy Inputs") tp_atr = input.float(4, "Take Profit ATR Multiplier", group = "Strategy Inputs") din_tp_qty = input.int(50, "2 Steps TP qty%", group = "Strategy Inputs") dema_a_filter = input.float(0, "DEMA Angle Threshold (+ & -)", group = "Strategy Inputs") dema_a_look = input.int(1, "DEMA Angle Lookback", group = "Strategy Inputs") dr_test = input.string("Backtest", "Testing", options = ["Backtest", "Forwardtest", "All"], group = "Strategy Inputs") not_in_trade = strategy.position_size == 0 //Backtesting date range start_year = input.int(2021, "Backtesting start year", group = "BT Date Range") start_month = input.int(1, "Backtesting start month", group = "BT Date Range") start_date = input.int(1, "Backtesting start day", group = "BT Date Range") end_year = input.int(2021, "Backtesting end year", group = "BT Date Range") end_month = input.int(12, "Backtesting end month", group = "BT Date Range") end_date = input.int(31, "Backtesting end day", group = "BT Date Range") bt_date_range = (time >= timestamp(syminfo.timezone, start_year, start_month, start_date, 0, 0)) and (time < timestamp(syminfo.timezone, end_year, end_month, end_date, 0, 0)) //Forward testing date range start_year_f = input.int(2022, "Forwardtesting start year", group = "FT Date Range") start_month_f = input.int(1, "Forwardtesting start month", group = "FT Date Range") start_date_f = input.int(1, "Forwardtesting start day", group = "FT Date Range") end_year_f = input.int(2022, "Forwardtesting end year", group = "FT Date Range") end_month_f = input.int(03, "Forwardtesting end month", group = "FT Date Range") end_date_f = input.int(26, "Forwardtesting end day", group = "FT Date Range") ft_date_range = (time >= timestamp(syminfo.timezone, start_year_f, start_month_f, start_date_f, 0, 0)) and (time < timestamp(syminfo.timezone, end_year_f, end_month_f, end_date_f, 0, 0)) //date condition date_range_cond = if dr_test == "Backtest" bt_date_range else if dr_test == "Forwardtest" ft_date_range else true //INDICATORS //PIVOT SUPERTREND prd = input.int(2, "PVT ST Pivot Point Period", group = "Pivot Supertrend") Factor=input.float(3, "PVT ST ATR Factor", group = "Pivot Supertrend") Pd=input.int(9 , "PVT ST ATR Period", group = "Pivot Supertrend") // get Pivot High/Low float ph = ta.pivothigh(prd, prd) float pl = ta.pivotlow(prd, prd) // calculate the Center line using pivot points var float center = na float lastpp = ph ? ph : pl ? pl : na if lastpp if na(center) center := lastpp else //weighted calculation center := (center * 2 + lastpp) / 3 // upper/lower bands calculation Up = center - (Factor * ta.atr(Pd)) Dn = center + (Factor * ta.atr(Pd)) // get the trend float TUp = na float TDown = na Trend = 0 TUp := close[1] > TUp[1] ? math.max(Up, TUp[1]) : Up TDown := close[1] < TDown[1] ? math.min(Dn, TDown[1]) : Dn Trend := close > TDown[1] ? 1: close < TUp[1]? -1: nz(Trend[1], 1) Trailingsl = Trend == 1 ? TUp : TDown // check and plot the signals bsignal = Trend == 1 and Trend[1] == -1 ssignal = Trend == -1 and Trend[1] == 1 //get S/R levels using Pivot Points float resistance = na float support = na support := pl ? pl : support[1] resistance := ph ? ph : resistance[1] //DEMA dema_ln = input.int(200, "DEMA Len", group = 'D-EMAs') dema_src = input.source(close, "D-EMAs Source", group = 'D-EMAs') ema_fd = ta.ema(dema_src, dema_ln) dema = (2*ema_fd)-(ta.ema(ema_fd,dema_ln)) //EMA ema1_l = input.int(21, "EMA 1 Len", group = 'D-EMAs') ema2_l = input.int(50, "EMA 2 Len", group = 'D-EMAs') ema3_l = input.int(200, "EMA 3 Len", group = 'D-EMAs') ema1 = ta.ema(dema_src, ema1_l) ema2 = ta.ema(dema_src, ema2_l) ema3 = ta.ema(dema_src, ema3_l) //Supertrend Periods = input.int(21, "ST ATR Period", group = "Normal Supertrend") src_st = input.source(hl2, "ST Supertrend Source", group = "Normal Supertrend") Multiplier = input.float(2.0 , "ST ATR Multiplier", group = "Normal Supertrend") changeATR= true atr2 = ta.sma(ta.tr, Periods) atr3= changeATR ? ta.atr(Periods) : atr2 up=src_st-(Multiplier*atr3) up1 = nz(up[1],up) up := close[1] > up1 ? math.max(up,up1) : up dn=src_st+(Multiplier*atr3) dn1 = nz(dn[1], dn) dn := close[1] < dn1 ? math.min(dn, dn1) : dn trend = 1 trend := nz(trend[1], trend) trend := trend == -1 and close > dn1 ? 1 : trend == 1 and close < up1 ? -1 : trend buySignal = trend == 1 and trend[1] == -1 sellSignal = trend == -1 and trend[1] == 1 //ATR atr = ta.atr(14) ///CONDITIONS //BUY /// ema simple ema_cond_b = if ema_b ema1 > ema2 and ema2 > ema3 else true ///ema angle dema_angle_rad = math.atan((dema - dema[dema_a_look])/0.0001) dema_angle = dema_angle_rad * (180/math.pi) dema_ang_cond_b = if ema_b_ang if dema_angle >= dema_a_filter true else false else true ///ema distance dema_cond_b = if dema_b close > dema else true //supertrends ///if pivot buy sig or (st buy sig and pivot. trend = 1) pvt_cond_b = bsignal st_cond_b = if st_sig buySignal and Trend == 1 else false st_entry_cond = pvt_cond_b or st_cond_b ///stop loss tp sl_b = if take_p if trend == 1 up else close - (atr * sl_atr) else close - (atr * sl_atr) tp_b = if take_p if trend == 1 close + ((close - up) * (tp_atr / sl_atr)) else close + (atr * tp_atr) else close + (atr * tp_atr) //position size init_cap = strategy.equity pos_size_b = math.round((init_cap * .01) / (close - sl_b)) ent_price = strategy.opentrades.entry_price(strategy.opentrades - 1) var sl_b_n = 0.0 var tp_b_n = 0.0 longCondition = (ema_cond_b and dema_cond_b and dema_ang_cond_b and st_entry_cond and date_range_cond and not_in_trade) if (longCondition) strategy.entry("Long", strategy.long, qty = pos_size_b) sl_b_n := sl_b tp_b_n := tp_b ent_price := strategy.opentrades.entry_price(strategy.opentrades - 1) if (up[1] < ent_price and up >= ent_price and trend[0] == 1) if din_tp strategy.close("Long", qty_percent = din_tp_qty) if move_sl sl_b_n := ent_price strategy.exit("Exit", "Long", stop =sl_b_n, limit = tp_b_n) //sell ///ema simple ema_cond_s = if ema_b ema1 < ema2 and ema2 < ema3 else true //ema distance dema_cond_s = if dema_b close < dema else true //dema angle dema_ang_cond_s = if ema_b_ang if dema_angle <= (dema_a_filter * -1) true else false else true //supertrends ///if pivot buy sig or (st buy sig and pivot. trend = 1) pvt_cond_s = ssignal st_cond_s = if st_sig sellSignal and Trend == -1 else false st_entry_cond_s = pvt_cond_s or st_cond_s ///stop loss tp sl_s = if take_p if trend == -1 dn else close + (atr * sl_atr) else close + (atr * sl_atr) tp_s = if take_p if trend == -1 close - ((dn - close) * (tp_atr / sl_atr)) else close - (atr * tp_atr) else close - (atr * tp_atr) shortCondition = (ema_cond_s and dema_cond_s and dema_ang_cond_s and st_entry_cond_s and not_in_trade) pos_size_s = math.round((init_cap * .01) / (sl_s - close)) var sl_s_n = 0.0 var tp_s_n = 0.0 if (shortCondition) strategy.entry("Short", strategy.short, qty = pos_size_s) sl_s_n := sl_s tp_s_n := tp_s if (dn[1] > ent_price and dn <= ent_price and trend[0] == -1) if din_tp strategy.close("Short", qty_percent = din_tp_qty) if move_sl sl_s_n := ent_price strategy.exit("Exit", "Short", stop = sl_s_n, limit = tp_s_n)