Esta estrategia se basa en la teoría del nivel de riesgo de Ben Cowen y tiene como objetivo implementar un enfoque similar utilizando los niveles de banda BEAM. El nivel superior de BEAM es el promedio móvil de 200 semanas después de tomar el logaritmo, y el nivel inferior es el promedio móvil de 200 semanas en sí. Esto nos da un rango de 0 a 1.
La estrategia se basa principalmente en la teoría de la banda BEAM propuesta por Ben Cowen. De acuerdo con los cambios de precio de BTC
Cuando el precio cae a los mínimos, la estrategia aumentará gradualmente la posición larga. Específicamente, si el precio está entre las bandas 0 y 0.5, se emitirán órdenes de compra en un día determinado cada mes. La cantidad de compra aumentará gradualmente a medida que el número de bandas disminuye. Por ejemplo, con la banda 5, la cantidad de compra es del 20% del total mensual de DCA. Con la banda 1, la cantidad de compra aumenta al 100% del total mensual de DCA.
Cuando los precios se elevan a máximos, la estrategia reducirá gradualmente su posición. Específicamente, si el precio excede la banda 0.5, se emitirán órdenes de venta proporcionalmente. La posición de venta aumentará gradualmente a medida que aumente el número de bandas. Por ejemplo, con la banda 6, se venderá el 6.67%. Con la banda 10, todas las posiciones se venderán.
La mayor ventaja de esta estrategia DCA de banda BEAM es que utiliza plenamente las características de volatilidad del comercio de BTC al pescar en el fondo cuando los precios caen a su nivel más bajo y obtener ganancias cuando los precios aumentan a sus picos.
En resumen, esta es una estrategia de ajuste de parámetros sofisticada que puede generar retornos constantes a largo plazo en condiciones fluctuantes del mercado de BTC.
Si bien la estrategia DCA de banda BEAM tiene muchas ventajas, todavía hay algunos riesgos potenciales que deben ser conocidos.
Para mitigar los riesgos, pueden adoptarse las siguientes medidas:
Teniendo en cuenta los riesgos anteriores, la optimización de esta estrategia puede centrarse en:
A través de estas medidas, la estabilidad y la seguridad de la estrategia pueden mejorarse considerablemente.
La estrategia de costo promedio DCA de la banda BEAM es una estrategia comercial cuantitativa muy práctica. Aprovecha con éxito la teoría BEAM para guiar las decisiones comerciales, complementada por un modelo de promedio de costos para controlar los costos de compra. Al mismo tiempo, presta atención a la gestión de riesgos estableciendo puntos de stop loss para evitar la expansión de las pérdidas. Con la optimización de parámetros y adiciones modulares, esta estrategia puede convertirse en una herramienta importante para el comercio cuantitativo para obtener rendimientos constantes a largo plazo del mercado BTC. Merece más investigación y aplicación por parte de los profesionales del comercio cuantitativo.
/*backtest start: 2023-02-11 00:00:00 end: 2024-02-17 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // © gjfsdrtytru - BEAM DCA Strategy { // Based on Ben Cowen's risk level strategy, this aims to copy that method but with BEAM band levels. // Upper BEAM level is derived from ln(price/200W MA)/2.5, while the 200W MA is the floor price. This is our 0-1 range. // Buy limit orders are set at the < 0.5 levels and sell orders are set at the > 0.5 level. //@version=5 strategy( title = "BEAM DCA Strategy Monthly", shorttitle = "BEAM DCA M", overlay = true, pyramiding = 500, default_qty_type = strategy.percent_of_equity, default_qty_value = 0, initial_capital = 0) //} // Inputs { ———————————————————————————————————————————————————————————————————— T_ceiling = input.string("Off", "Diminishing Returns", ["Off","Linear","Parabolic"], "Account for diminishing returns as time increases") day = input.int(1, "DCA Day of Month",1,28,1,"Select day of month for buy orders.") DCAamount = input.int(1000,"DCA Amount",400,tooltip="Enter the maximum amount you'd be willing to DCA for any given month.") T_buy = input(true,"Buy Orders","Toggle buy orders.") T_sell = input(true,"Sell Orders","Toggle sell orders.") // Time period testStartYear = input.int(2018, title="Backtest Start Year", minval=2010,maxval=2100,group="Backtest Period") testStartMonth = input.int(1, title="Backtest Start Month", minval=1, maxval=12, group="Backtest Period") testStartDay = input.int(1, title="Backtest Start Day", minval=1, maxval=31, group="Backtest Period") testPeriodLen = input.int(9999, title="Backtest Period (days)", minval=1, group="Backtest Period",tooltip="Days until strategy ends") * 86400000 // convert days into UNIX time testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) testPeriodStop = testPeriodStart + testPeriodLen testPeriod() => true // ——————————————————————————————————————————————————————————————————————————— } // Diminishing Returns { ——————————————————————————————————————————————————————— x = bar_index + 1 assetDivisor= 2.5 switch T_ceiling == "Linear" => assetDivisor:= 3.50542 - 0.000277696 * x T_ceiling == "Parabolic"=> assetDivisor:= -0.0000001058992338 * math.pow(x,2) + 0.000120729 * x + 3.1982 // ——————————————————————————————————————————————————————————————————————————— } // Risk Levels { ——————————————————————————————————————————————————————————————— cycleLen = 1400 getMaLen() => if bar_index < cycleLen bar_index + 1 else cycleLen // Define Risk Bands price = close riskLow = ta.sma(price,getMaLen()) risk1 = riskLow * math.exp((assetDivisor)*0.1) risk2 = riskLow * math.exp((assetDivisor)*0.2) risk3 = riskLow * math.exp((assetDivisor)*0.3) risk4 = riskLow * math.exp((assetDivisor)*0.4) risk5 = riskLow * math.exp((assetDivisor)*0.5) risk6 = riskLow * math.exp((assetDivisor)*0.6) risk7 = riskLow * math.exp((assetDivisor)*0.7) risk8 = riskLow * math.exp((assetDivisor)*0.8) risk9 = riskLow * math.exp((assetDivisor)*0.9) riskHigh = riskLow * math.exp((assetDivisor)) // Plot Risk Bands p_low = plot(riskLow, "Beam Risk 0.0",color.new(#0042F0,50),3,editable=false) p_band1 = plot(risk1, "Beam Risk 0.1",color.new(#0090F5,20),1,editable=false) p_band2 = plot(risk2, "Beam Risk 0.2",color.new(#00C6DB,20),1,editable=false) p_band3 = plot(risk3, "Beam Risk 0.3",color.new(#00F5BD,20),1,editable=false) p_band4 = plot(risk4, "Beam Risk 0.4",color.new(#00F069,20),1,editable=false) p_band5 = plot(risk5, "Beam Risk 0.5",color.new(#00DB08,50),3,editable=false) p_band6 = plot(risk6, "Beam Risk 0.6",color.new(#E8D20C,20),1,editable=false) p_band7 = plot(risk7, "Beam Risk 0.7",color.new(#F2B40C,20),1,editable=false) p_band8 = plot(risk8, "Beam Risk 0.8",color.new(#DC7A00,20),1,editable=false) p_band9 = plot(risk9, "Beam Risk 0.9",color.new(#F2520C,20),1,editable=false) p_band10 = plot(riskHigh, "Beam Risk 1.0",color.new(#F01102,50),3,editable=false) // ——————————————————————————————————————————————————————————————————————————— } // Order Execution { ——————————————————————————————————————————————————————————— band5 = price<risk5 and price>risk4 band4 = price<risk4 and price>risk3 band3 = price<risk3 and price>risk2 band2 = price<risk2 and price>risk1 band1 = price<risk1 // DCA buy order weights y = DCAamount / 5 switch band5 => y:= y * 1 band4 => y:= y * 2 band3 => y:= y * 3 band2 => y:= y * 4 band1 => y:= y * 5 // Contracts per order contracts =(y/price) if testPeriod() // Buy orders if T_buy == true if dayofmonth == day strategy.entry("Risk Band 5",strategy.long,qty=contracts,when=band5) strategy.entry("Risk Band 4",strategy.long,qty=contracts,when=band4) strategy.entry("Risk Band 3",strategy.long,qty=contracts,when=band3) strategy.entry("Risk Band 2",strategy.long,qty=contracts,when=band2) strategy.entry("Risk Band 1",strategy.long,qty=contracts,when=band1) // Sell orders if T_sell == true if strategy.opentrades > 5 strategy.exit("Risk Band 6",qty_percent=6.67,limit=risk6) strategy.exit("Risk Band 7",qty_percent=14.28,limit=risk7) strategy.exit("Risk Band 8",qty_percent=25.00,limit=risk8) strategy.exit("Risk Band 9",qty_percent=44.44,limit=risk9) strategy.exit("Risk Band 10",qty_percent=100,limit=riskHigh) // ——————————————————————————————————————————————————————————————————————————— } // Info { —————————————————————————————————————————————————————————————————————— // Line plot of avg. entry price plot(strategy.position_size > 0 ? strategy.position_avg_price : na,"Average Entry",color.red,trackprice=true,editable=false) // Unrealised PNL uPNL = price/strategy.position_avg_price // Realised PNL realPNL = 0. for i = 0 to strategy.closedtrades-1 realPNL += strategy.closedtrades.profit(i) // Size of open position in ($) openPosSize = 0. for i = 0 to strategy.opentrades-1 openPosSize += strategy.opentrades.size(i) * strategy.position_avg_price // Size of closed position in ($) closePosSize = 0. if strategy.closedtrades > 0 for i = 0 to strategy.closedtrades-1 closePosSize += strategy.closedtrades.size(i) * strategy.closedtrades.entry_price(i) invested = openPosSize+closePosSize // Total capital ($) put into strategy equity = openPosSize+closePosSize+strategy.openprofit+realPNL // Total current equity ($) in strategy (counting realised PNL) ROI = (equity-invested) / invested * 100 // ROI of strategy (compare capital invested to excess return) // // Info Table // var table table1 = table.new(position.bottom_right,2,9,color.black,color.gray,1,color.gray,2) // table.cell(table1,0,0,"Capital Invested", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,1,"Open Position", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,2,"Average Entry", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,3,"Last Price", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,4,"Open PNL (%)", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,5,"Open PNL ($)", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,6,"Realised PNL ($)", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,7,"Total Equity", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,8,"Strategy ROI", text_color=color.white,text_halign=text.align_right) // table.cell(table1,1,0,"$" + str.tostring(invested, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,1,"$" + str.tostring(openPosSize, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,2,"$" + str.tostring(strategy.position_avg_price, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,3,"$" + str.tostring(price, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,4, str.tostring((uPNL-1)*100, "#,###.00") + "%",text_halign=text.align_right,text_color = uPNL > 1 ? color.lime : color.red) // table.cell(table1,1,5,"$" + str.tostring(strategy.openprofit, "#,###.00"), text_halign=text.align_right,text_color = uPNL > 1 ? color.lime : color.red) // table.cell(table1,1,6,"$" + str.tostring(realPNL, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,7,"$" + str.tostring(equity, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,8, str.tostring(ROI, "#,###.00") + "%",text_halign=text.align_right,text_color = ROI > 1 ? color.lime : color.red) // // ——————————————————————————————————————————————————————————————————————————— }