Les ressources ont été chargées... Je charge...

Recherche sur la stratégie de couverture multi-monnaie des contrats à terme de Binance Partie 3

Auteur:La bonté, Créé: 2020-05-12 12:14:29, Mis à jour: 2023-11-04 19:50:43

img

C'est juste une simulation approximative, pour que tout le monde ait une idée précise de la quantité de marges perdues.

L'estimation du risque de Binance pour les stratégies de vente à découvert et d'achat à découvert

Regardez d'abord le rapport original:https://www.fmz.com/digest-topic/5584et le rapport amélioré:https://www.fmz.com/digest-topic/5588

La stratégie a été partagée publiquement depuis 4 jours maintenant. La première étape s'est très bien déroulée, avec des rendements élevés et peu de rétracements, de sorte que de nombreux utilisateurs utilisent un effet de levier très élevé pour parier un rendement de 10% par jour. Cependant, comme indiqué dans le rapport initial, il n'y a pas de stratégie parfaite. Vendre court sur la tendance à la hausse et acheter long sur la tendance à la baisse utilisent les caractéristiques des altcoins pour augmenter et chuter ensemble. Si une monnaie s'éloigne d'une tendance unique, elle accumulera de nombreuses positions de détention. Bien qu'une moyenne mobile ait été utilisée pour suivre le prix initial, les risques existent toujours. Ce rapport quantifie principalement les risques spécifiques et pourquoi le paramètre recommandé trade_value représente 3% des fonds totaux.

Afin de mettre en évidence le code, nous mettons dans avancé de cette partie, tout le monde devrait essayer d'abord exécuter le code suivant (à partir de la partie des bibliothèques d'importation).

Pour simuler, nous supposons qu'il y a 20 monnaies, mais il suffit d'ajouter BTC et ETH, et d'utiliser BTC pour représenter 19 monnaies à prix constants.

Tout d'abord, simuler la situation où le prix d'une seule monnaie continue d'augmenter. Stop_loss indique que le stop loss dévie. Ici, il ne s'agit que d'une simulation. La situation réelle aura un retracement intermittent, ce ne sera pas aussi mauvais que la simulation.

Supposons qu'il n'y ait pas de retracement vers cette devise, lorsque l'écart de stop loss est de 0,41, ETH a augmenté de 44% à ce moment-là, et les résultats ont finalement été perdus 7 fois de la valeur de négociation, c'est-à-dire trade_value * 7. Si trade_value est réglé à 3% du total des fonds, alors la perte = total des fonds * 0,03 * 7. Le retracement maximal est d'environ 0,03 * 7 = 21%.

Vous pouvez estimer votre propre tolérance au risque sur la base des résultats ci-dessous.

btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [i/100. for i in range(100,500)] # Ethereum, up 1% in one cycle

for stop_loss in [i/1000. for i in range(10,1500,50)]:
    e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
    trade_value  = 300 # 300 transactions
    
    for i in range(200):

        index = (btc_price[i]*19+eth_price[i])/20. # index

        e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]}) 

        diff_btc = btc_price[i] - index # deviation
        diff_eth = eth_price[i] - index

        btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
        eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])

        aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
        aim_eth_value = -trade_value*round(diff_eth/0.01,1)

        if aim_btc_value - btc_value > 20:
            e.Buy('BTC',btc_price[i],(aim_btc_value - btc_value)/btc_price[i])

        if aim_eth_value - eth_value < -20 and diff_eth < stop_loss:
            e.Sell('ETH',eth_price[i], (eth_value-aim_eth_value)/eth_price[i],diff_eth)

        if diff_eth > stop_loss and eth_value < 0: # Stop loss
            stop_price = eth_price[i]
            e.Buy('ETH',eth_price[i], (-eth_value)/eth_price[i],diff_eth)

    print('Currency price:',stop_price,' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 1.02  Stop loss deviation: 0.01 Final balance: 9968.840396  Multiple of losing trade volume: 0.1
Currency price: 1.07  Stop loss deviation: 0.06 Final balance: 9912.862738  Multiple of losing trade volume: 0.3
Currency price: 1.12  Stop loss deviation: 0.11 Final balance: 9793.616067  Multiple of losing trade volume: 0.7
Currency price: 1.17  Stop loss deviation: 0.16 Final balance: 9617.477263  Multiple of losing trade volume: 1.3
Currency price: 1.23  Stop loss deviation: 0.21 Final balance: 9337.527299  Multiple of losing trade volume: 2.2
Currency price: 1.28  Stop loss deviation: 0.26 Final balance: 9051.5166  Multiple of losing trade volume: 3.2
Currency price: 1.33  Stop loss deviation: 0.31 Final balance: 8721.285267  Multiple of losing trade volume: 4.3
Currency price: 1.38  Stop loss deviation: 0.36 Final balance: 8350.582251  Multiple of losing trade volume: 5.5
Currency price: 1.44  Stop loss deviation: 0.41 Final balance: 7856.720861  Multiple of losing trade volume: 7.1
Currency price: 1.49  Stop loss deviation: 0.46 Final balance: 7406.412066  Multiple of losing trade volume: 8.6
Currency price: 1.54  Stop loss deviation: 0.51 Final balance: 6923.898356  Multiple of losing trade volume: 10.3
Currency price: 1.59  Stop loss deviation: 0.56 Final balance: 6411.276143  Multiple of losing trade volume: 12.0
Currency price: 1.65  Stop loss deviation: 0.61 Final balance: 5758.736222  Multiple of losing trade volume: 14.1
Currency price: 1.7  Stop loss deviation: 0.66 Final balance: 5186.230956  Multiple of losing trade volume: 16.0
Currency price: 1.75  Stop loss deviation: 0.71 Final balance: 4588.802975  Multiple of losing trade volume: 18.0
Currency price: 1.81  Stop loss deviation: 0.76 Final balance: 3841.792751  Multiple of losing trade volume: 20.5
Currency price: 1.86  Stop loss deviation: 0.81 Final balance: 3193.215479  Multiple of losing trade volume: 22.7
Currency price: 1.91  Stop loss deviation: 0.86 Final balance: 2525.155765  Multiple of losing trade volume: 24.9
Currency price: 1.96  Stop loss deviation: 0.91 Final balance: 1837.699982  Multiple of losing trade volume: 27.2
Currency price: 2.02  Stop loss deviation: 0.96 Final balance: 988.009942  Multiple of losing trade volume: 30.0
Currency price: 2.07  Stop loss deviation: 1.01 Final balance: 260.639618  Multiple of losing trade volume: 32.5
Currency price: 2.12  Stop loss deviation: 1.06 Final balance: -483.509646  Multiple of losing trade volume: 34.9
Currency price: 2.17  Stop loss deviation: 1.11 Final balance: -1243.486107  Multiple of losing trade volume: 37.5
Currency price: 2.24  Stop loss deviation: 1.16 Final balance: -2175.438384  Multiple of losing trade volume: 40.6
Currency price: 2.28  Stop loss deviation: 1.21 Final balance: -2968.19255  Multiple of losing trade volume: 43.2
Currency price: 2.33  Stop loss deviation: 1.26 Final balance: -3774.613275  Multiple of losing trade volume: 45.9
Currency price: 2.38  Stop loss deviation: 1.31 Final balance: -4594.305499  Multiple of losing trade volume: 48.6
Currency price: 2.44  Stop loss deviation: 1.36 Final balance: -5594.651063  Multiple of losing trade volume: 52.0
Currency price: 2.49  Stop loss deviation: 1.41 Final balance: -6441.474964  Multiple of losing trade volume: 54.8
Currency price: 2.54  Stop loss deviation: 1.46 Final balance: -7299.652662  Multiple of losing trade volume: 57.7

En simulant la situation de baisse continue, la baisse est accompagnée d'une diminution de la valeur du contrat, de sorte que le risque est plus élevé que la hausse, et à mesure que le prix baisse, le taux d'augmentation des pertes s'accélère. Lorsque la valeur de l'écart de stop loss est de -0,31, le prix de la devise chute de 33% à ce moment-là, et une perte de 6,5 transactions. Si le montant du commerce trade_value est fixé à 3% des fonds totaux, le retracement maximum est d'environ 0,03 * 6,5 = 19,5%.

btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [2-i/100. for i in range(100,200)] # Ethereum

for stop_loss in [-i/1000. for i in range(10,1000,50)]:
    e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
    trade_value  = 300 # 300 transactions
    
    for i in range(100):

        index = (btc_price[i]*19+eth_price[i])/20. # index

        e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]}) 

        diff_btc = btc_price[i] - index # deviation
        diff_eth = eth_price[i] - index

        btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
        eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])

        aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
        aim_eth_value = -trade_value*round(diff_eth/0.01,1)
        
        if aim_btc_value - btc_value < -20:
            e.Sell('BTC',btc_price[i],-(aim_btc_value - btc_value)/btc_price[i])
    
        if aim_eth_value - eth_value > 20 and diff_eth > stop_loss:
            e.Buy('ETH',eth_price[i], -(eth_value-aim_eth_value)/eth_price[i],diff_eth)

        if diff_eth < stop_loss and eth_value > 0:
            e.Sell('ETH',eth_price[i], (eth_value)/eth_price[i],diff_eth)
            stop_price = eth_price[i]
        
    print('Currency price:',round(stop_price,2),' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 0.98  Stop loss deviation: -0.01 Final balance: 9983.039091  Multiple of losing trade volume: 0.1
Currency price: 0.93  Stop loss deviation: -0.06 Final balance: 9922.200148  Multiple of losing trade volume: 0.3
Currency price: 0.88  Stop loss deviation: -0.11 Final balance: 9778.899361  Multiple of losing trade volume: 0.7
Currency price: 0.83  Stop loss deviation: -0.16 Final balance: 9545.316075  Multiple of losing trade volume: 1.5
Currency price: 0.77  Stop loss deviation: -0.21 Final balance: 9128.800213  Multiple of losing trade volume: 2.9
Currency price: 0.72  Stop loss deviation: -0.26 Final balance: 8651.260863  Multiple of losing trade volume: 4.5
Currency price: 0.67  Stop loss deviation: -0.31 Final balance: 8037.598952  Multiple of losing trade volume: 6.5
Currency price: 0.62  Stop loss deviation: -0.36 Final balance: 7267.230651  Multiple of losing trade volume: 9.1
Currency price: 0.56  Stop loss deviation: -0.41 Final balance: 6099.457595  Multiple of losing trade volume: 13.0
Currency price: 0.51  Stop loss deviation: -0.46 Final balance: 4881.767442  Multiple of losing trade volume: 17.1
Currency price: 0.46  Stop loss deviation: -0.51 Final balance: 3394.414792  Multiple of losing trade volume: 22.0
Currency price: 0.41  Stop loss deviation: -0.56 Final balance: 1575.135344  Multiple of losing trade volume: 28.1
Currency price: 0.35  Stop loss deviation: -0.61 Final balance: -1168.50508  Multiple of losing trade volume: 37.2
Currency price: 0.29  Stop loss deviation: -0.66 Final balance: -4071.007983  Multiple of losing trade volume: 46.9
Currency price: 0.25  Stop loss deviation: -0.71 Final balance: -7750.361195  Multiple of losing trade volume: 59.2
Currency price: 0.19  Stop loss deviation: -0.76 Final balance: -13618.366286  Multiple of losing trade volume: 78.7
Currency price: 0.14  Stop loss deviation: -0.81 Final balance: -20711.473968  Multiple of losing trade volume: 102.4
Currency price: 0.09  Stop loss deviation: -0.86 Final balance: -31335.965608  Multiple of losing trade volume: 137.8
Currency price: 0.04  Stop loss deviation: -0.91 Final balance: -51163.223715  Multiple of losing trade volume: 203.9
Currency price: 0.04  Stop loss deviation: -0.96 Final balance: -81178.565715  Multiple of losing trade volume: 303.9
# Libraries to import
import pandas as pd
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/20227de6c1d10cb9dd1.csv ', index_col = 0)
price_usdt.index = pd.to_datetime(price_usdt.index)
price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,]
price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0)
price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange:
    
    def __init__(self, trade_symbols, leverage=20, commission=0.00005,  initial_balance=10000, log=False):
        self.initial_balance = initial_balance # Initial asset
        self.commission = commission
        self.leverage = leverage
        self.trade_symbols = trade_symbols
        self.date = ''
        self.log = log
        self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit'])
        self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount, msg=''):
        if self.date and self.log:
            print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg))
            
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        
        self.account['USDT']['realised_profit'] -= price*amount*self.commission # Minus handling fee
        self.account['USDT']['fee'] += price*amount*self.commission
        self.account[symbol]['fee'] += price*amount*self.commission
        
        if cover_amount > 0: # close positions first
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  # profit
            self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage # Free margin
            
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['margin'] -=  cover_amount*self.account[symbol]['hold_price']/self.leverage
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account['USDT']['margin'] +=  open_amount*price/self.leverage            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
            self.account[symbol]['margin'] +=  open_amount*price/self.leverage
            
        self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
        self.account[symbol]['price'] = price
        self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price
        
        return True
    
    def Buy(self, symbol, price, amount, msg=''):
        self.Trade(symbol, 1, price, amount, msg)
        
    def Sell(self, symbol, price, amount, msg=''):
        self.Trade(symbol, -1, price, amount, msg)
        
    def Update(self, date, close_price): # Update assets
        self.date = date
        self.close = close_price
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            if np.isnan(close_price[symbol]):
                continue
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
        
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
        self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage
        self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]

Relationnée

Plus de