2021年就要过去,从DEFI到GAMEFI热点层出不穷,整体大盘仍然是牛市。现在回过头来总结,你2021年收益多少?错过了什么机会?有什么成功的投资?最近我拉取了一下过去一年的历史行情,发现了一个令人意外的简单暴利策略,但就是多币种指数。
交易所上架币种太多了,有很多注定默默无闻,甚至有可能被退出交易。这里我们选择上线过币安永续合约的币种,它们一般经过了考验,是被认可的主流币种,相对安全。经过简单的筛选,去掉一些指数币,最终得到134个币种。
import requests from datetime import date,datetime import time import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline
## 当前交易对 Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo') symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols_f = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))- set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT'] print(symbols_f)
print(len(symbols_f))
过去一年市场
然后我们获取它们过去一年的日线收盘价,注意到一些币的上架时间较短,因此需要填充数据。对数据进行归一化处理,可以算出指数。
最终的指数收益约为12倍,就是说如果2021年1月1日平均买入这134个币,什么都不做的最终收益为12倍,估计90%以上的人都没有跑赢平均指数。其中跌幅最大的币:ICP跌93%, DODO跌85%, LINA跌75%。涨幅接近百倍的有:SOL、FTM、LUNA、MATIC、SAND、AXS。其中AXS涨幅168倍,是最大的黑马。中位数涨幅为3倍,可以说主要是靠公链和游戏把指数拉起来的。为了防止幸存者偏差,把期间永续新上币种排除在外,也取得了接近11倍的收益。是单纯的持有BTC的7倍收益。
这是个令人绝望的收益率,辛辛苦苦费尽心思做各种各样的策略,还没有一年躺平赚的多。但需要注意的是,其中的几个比涨幅实在太过于巨大,明显偏离了指数,如果年初没有选到这些币,收益将会接近中位数,就远远没有那么突出了。
#获取任意周期K线的函数 def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'): Klines = [] start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000 end_time = int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000 intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000} while start_time < end_time: mid_time = min(start_time+1000*int(period[:-1])*intervel_map[period[-1]],end_time) url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time) res = requests.get(url) res_list = res.json() if type(res_list) == list and len(res_list) > 0: start_time = res_list[-1][0] Klines += res_list elif type(res_list) == list: start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]] else: break df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float') df.index = pd.to_datetime(df.time,unit='ms') return df
df_all_s = pd.DataFrame(index=pd.date_range(start='2021-1-1', end='2021-12-28', freq='1d'),columns=symbols_s) for i in range(len(symbols_f)): #print(symbols_s[i]) symbol_s = symbols_f[i] df_s = GetKlines(symbol=symbol_s,start='2021-1-1',end='2021-12-28',period='1d',base='api',v='v3') df_all_s[symbol_s] = df_s[~df_s.index.duplicated(keep='first')].close
df_all_s.tail() #数据结构
df_all = df_all_s.fillna(method='bfill')#填充数据 df_norm = df_all/df_all.iloc[0] #归一化 df_norm.mean(axis=1).plot(figsize=(12,4),grid=True); #最终指数收益图
#中位数涨幅 df_norm.median(axis=1).plot(figsize=(12,4),grid=True);
#涨跌排名 print(df_norm.iloc[-1].round(2).sort_values().to_dict())
#当前价格与年内最高点相比最大回撤 print((1-df_norm.iloc[-1]/df_norm.max()).round(2).sort_values().to_dict())
df_all_f = pd.DataFrame(index=pd.date_range(start='2021-1-1', end='2021-12-28', freq='1d'),columns=symbols_s) for i in range(len(symbols_f)): #print(symbols_s[i]) symbol_f = symbols_f[i] df_f = GetKlines(symbol=symbol_f,start='2021-1-1',end='2021-12-28',period='1d',base='fapi',v='v1') df_all_f[symbol_f] = df_f[~df_f.index.duplicated(keep='first')].close
#不包含新上币 df = df_all_s[df_all_s.columns[~df_all_f.iloc[0].isnull()]] df = df.fillna(method='bfill') df = df/df.iloc[0] df.mean(axis=1).plot(figsize=(12,4),grid=True);
#相对于比特币 (df.mean(axis=1)/df.BTCUSDT).plot(figsize=(12,4),grid=True);
#还是用原来的回测引擎 class Exchange: def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000): self.initial_balance = initial_balance #初始的资产 self.fee = fee self.trade_symbols = trade_symbols self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}} for symbol in trade_symbols: self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0} def Trade(self, symbol, direction, price, amount): cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount) open_amount = amount - cover_amount self.account['USDT']['realised_profit'] -= price*amount*self.fee #扣除手续费 self.account['USDT']['fee'] += price*amount*self.fee self.account[symbol]['fee'] += price*amount*self.fee if cover_amount > 0: #先平仓 self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount #利润 self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount self.account[symbol]['amount'] -= -direction*cover_amount self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price'] if open_amount > 0: total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount total_amount = direction*self.account[symbol]['amount']+open_amount self.account[symbol]['hold_price'] = total_cost/total_amount self.account[symbol]['amount'] += direction*open_amount def Buy(self, symbol, price, amount): self.Trade(symbol, 1, price, amount) def Sell(self, symbol, price, amount): self.Trade(symbol, -1, price, amount) def Update(self, close_price): #对资产进行更新 self.account['USDT']['unrealised_profit'] = 0 for symbol in self.trade_symbols: self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount'] self.account[symbol]['price'] = close_price[symbol] self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol] self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit'] self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
#为了回测更加准确,爬取了小时K线 df_all_s = pd.DataFrame(index=pd.date_range(start='2021-1-1', end='2021-12-28', freq='1h'),columns=symbols_s) for i in range(len(symbols_f)): #print(symbols_s[i]) symbol_s = symbols_f[i] df_s = GetKlines(symbol=symbol_s,start='2021-1-1',end='2021-12-28',period='1h',base='api',v='v3') df_all_s[symbol_s] = df_s[~df_s.index.duplicated(keep='first')].close
df = df_all_s[df_all_s.columns[~df_all_f.iloc[0].isnull()]] df = df.fillna(method='bfill') df = df/df.iloc[0] df.mean(axis=1).plot(figsize=(12,4),grid=True);
平衡策略的表现
回测选择了2021年1月1日上线币安永续合约的所有币种,K线周期为1h,参数为持仓低于平均值的5%开始补仓,超过5%卖出。当回测为全币种时,最终策略收益为7.7倍。明显不如13倍的平均收益。这也实在预料之中,毕竟几个涨幅百倍的币实在太特殊了,平衡策略会把它们全部卖飞。
如果回测选择去掉涨幅最高的10个币,只考察相对平庸的币种,最终收益4.8倍,远超3.4倍的平均表现。
如果只轮动涨幅最高的3个币,最终收益为373倍,远超过了160倍的平均表现。这说明,如果所选轮动币种的趋势和涨幅趋于一致,那么轮动的结果将远好于不轮动的躺平。
#全币种回测 symbols = list(df.iloc[-1].sort_values()[:].index) e = Exchange(symbols, fee=0.001, initial_balance=10000) res_list = [] avg_pct = 1/len(symbols) for row in df[symbols].iterrows(): prices = row[1] total = e.account['USDT']['total'] e.Update(prices) for symbol in symbols: pct = e.account[symbol]['value']/total if pct < 0.95*avg_pct: e.Buy(symbol,prices[symbol],(avg_pct-pct)*total/prices[symbol]) if pct > 1.05*avg_pct: e.Sell(symbol,prices[symbol],(pct-avg_pct)*total/prices[symbol]) res_list.append([e.account[symbol]['value'] for symbol in symbols] + [e.account['USDT']['total']]) res = pd.DataFrame(data=res_list, columns=symbols+['total'],index = df.index)
e.account['USDT']
#全币种回测表现 (res.total/10000).plot(figsize=(12,4),grid = True); df[symbols].mean(axis=1).plot(figsize=(12,4),grid=True);
#去掉涨幅巨大的币种 symbols = list(df.iloc[-1].sort_values()[:-10].index) e = Exchange(symbols, fee=0.001, initial_balance=10000) res_list = [] avg_pct = 1/len(symbols) for row in df[symbols].iterrows(): prices = row[1] total = e.account['USDT']['total'] e.Update(prices) for symbol in symbols: pct = e.account[symbol]['value']/total if pct < 0.95*avg_pct: e.Buy(symbol,prices[symbol],(avg_pct-pct)*total/prices[symbol]) if pct > 1.05*avg_pct: e.Sell(symbol,prices[symbol],(pct-avg_pct)*total/prices[symbol]) res_list.append([e.account[symbol]['value'] for symbol in symbols] + [e.account['USDT']['total']]) res = pd.DataFrame(data=res_list, columns=symbols+['total'],index = df.index)
e.account['USDT']
(res.total/10000).plot(figsize=(12,4),grid = True); df[symbols].mean(axis=1).plot(figsize=(12,4),grid=True);
#只会测涨幅最高的币 symbols = list(df.iloc[-1].sort_values()[-3:].index) e = Exchange(symbols, fee=0.001, initial_balance=10000) res_list = [] avg_pct = 1/len(symbols) for row in df[symbols].iterrows(): prices = row[1] total = e.account['USDT']['total'] e.Update(prices) for symbol in symbols: pct = e.account[symbol]['value']/total if pct < 0.95*avg_pct: e.Buy(symbol,prices[symbol],(avg_pct-pct)*total/prices[symbol]) if pct > 1.05*avg_pct: e.Sell(symbol,prices[symbol],(pct-avg_pct)*total/prices[symbol]) res_list.append([e.account[symbol]['value'] for symbol in symbols] + [e.account['USDT']['total']]) res = pd.DataFrame(data=res_list, columns=symbols+['total'],index = df.index)
e.account['USDT']
(res.total/10000).plot(figsize=(12,4),grid = True); df[symbols].mean(axis=1).plot(figsize=(12,4),grid=True);
总结
总的来看,2021年是山寨币的大牛市,比特币落寞的一年。比特币的市值占比一路从年初的70%跌倒现在40%,已经是历史最低水平了,所以过去一年买入山寨并持有获取的平均收益远远高于持有比特币。展望2022年,如果你认为未来仍然有几个百倍币在当前市场上诞生,可以大胆分散持有然后耐心等待。如果你特别看好几个币或者看好平均市场,可以用轮动策略无脑获取超额的收益,如果你认为物极必反,可以抄底比特币,获得更好的收益和安全性。
diudiu.meiIl n'y aurait pas de marché baissier.
Les fiancées aussi.Ou bien vous vous couchez.
BanqueJe vous en prie.