La stratégie de rupture des bandes de Bollinger est une stratégie de suivi de tendance à court terme optimisée pour le trading de crypto. Elle utilise l'indicateur de bandes de Bollinger bien établi comme générateur de signal de base et est capable de prendre des positions longues et courtes.
La stratégie présente un haut niveau de configuration, y compris les paramètres des bandes de Bollinger, divers filtres, les paramètres de prise de profit/arrêt de perte et le seuil de perte intraday maximum.
La stratégie est centrée sur l'indicateur Bollinger Bands, qui calcule une bande moyenne, une bande supérieure et une bande inférieure qui servent de proxy pour les moyennes de prix et les limites de volatilité.
En outre, plusieurs filtres sont mis en œuvre pour éviter les faux signaux:
Filtre de tendance: longue au-dessus de la moyenne mobile, courte au-dessous de la moyenne mobile
Filtre de volatilité: ne négociez que lorsque la volatilité augmente
Filtre de direction: configurable pour les directions longue, courte ou les deux
Filtre de taux de variation: un mouvement suffisant des prix par rapport à la clôture précédente est requis
Filtre de date: pour les spécifications des délais de backtesting
Les sorties sont gérées par des mécanismes de prise de profit, de stop loss et de trailing stop pour verrouiller les gains et limiter les pertes.
Les principaux avantages de cette stratégie sont les suivants:
Indicateur de Bollinger Bands fiable comme signal de base
Filtres personnalisables empêchent les transactions indésirables
Une conception complète de stop loss/take profit
Réserves de protection contre les pertes intrajournalières maximales
Il prospère sur des marchés en évolution et avec un potentiel de profit
Malgré les avantages, certains risques subsistent:
Les écarts autour des bandes de Bollinger peuvent entraîner des pertes
Les filtres trop rigides réduisent les transactions sur les marchés à plage
Les lacunes peuvent arrêter les positions de manière préventive
Les déplacements extrêmes ne peuvent pas être complètement évités
Les mesures d'atténuation comprennent le réglage des filtres, l'intervention manuelle et les arrêts ajustés.
Optimisations possibles pour cette stratégie:
Recherche des combinaisons optimales de paramètres
Introduire l'apprentissage automatique pour l'optimisation adaptative
Rechercher de meilleures méthodes d'arrêt des pertes, par exemple les arrêts de volatilité
Incorporer le sentiment pour guider les actions discrétionnaires
Utiliser des instruments corrélés pour l'arbitrage statistique
La stratégie de rupture des bandes de Bollinger est un système éprouvé pour le trading de tendance à court terme. En combinant les mérites du signal de bandes de Bollinger et des filtres prudents, elle génère des entrées de qualité pour les tendances tout en évitant de faux signaux.
/*backtest start: 2022-11-22 00:00:00 end: 2023-11-04 05:20:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Bollinger Bands - Breakout Strategy",overlay=true ) // Define the length of the Bollinger Bands bbLengthInput = input.int (15,title="Length", group="Bollinger Bands", inline="BB") bbDevInput = input.float (2.0,title="StdDev", group="Bollinger Bands", inline="BB") // Define the settings for the Trend Filter trendFilterInput = input.bool(false, title="Above/Below", group = "Trend Filter", inline="Trend") trendFilterPeriodInput = input(223,title="", group = "Trend Filter", inline="Trend") trendFilterType = input.string (title="", defval="EMA",options=["EMA","SMA","RMA", "WMA"], group = "Trend Filter", inline="Trend") volatilityFilterInput = input.bool(true,title="StdDev", group = "Volatility Filter", inline="Vol") volatilityFilterStDevLength = input(15,title="",group = "Volatility Filter", inline="Vol") volatilityStDevMaLength = input(15,title=">MA",group = "Volatility Filter", inline="Vol") // ROC Filter // f_security function by LucF for PineCoders available here: https://www.tradingview.com/script/cyPWY96u-How-to-avoid-repainting-when-using-security-PineCoders-FAQ/ f_security(_sym, _res, _src, _rep) => request.security(_sym, _res, _src[not _rep and barstate.isrealtime ? 1 : 0])[_rep or barstate.isrealtime ? 0 : 1] high_daily = f_security(syminfo.tickerid, "D", high, false) roc_enable = input.bool(false, "", group="ROC Filter from CloseD", inline="roc") roc_threshold = input.float(1, "Treshold", step=0.5, group="ROC Filter from CloseD", inline="roc") closed = f_security(syminfo.tickerid,"1D",close, false) roc_filter= roc_enable ? (close-closed)/closed*100 > roc_threshold : true // Trade Direction Filter // tradeDirectionInput = input.string("Auto",options=["Auto", "Long&Short","Long Only", "Short Only"], title="Trade", group="Direction Filter", tooltip="Auto: if a PERP is detected (in the symbol description), trade long and short\n Otherwise as per user-input") // tradeDirection = switch tradeDirectionInput // "Auto" => str.contains(str.lower(syminfo.description), "perp") or str.contains(str.lower(syminfo.description), ".p") ? strategy.direction.all : strategy.direction.long // "Long&Short" => strategy.direction.all // "Long Only" => strategy.direction.long // "Short Only" => strategy.direction.short // => strategy.direction.all // strategy.risk.allow_entry_in(tradeDirection) // Calculate and plot the Bollinger Bands [bbMiddle, bbUpper, bbLower] = ta.bb (close, bbLengthInput, bbDevInput) plot(bbMiddle, "Basis", color=color.orange) bbUpperPlot = plot(bbUpper, "Upper", color=color.blue) bbLowerrPlot = plot(bbLower, "Lower", color=color.blue) fill(bbUpperPlot, bbLowerrPlot, title = "Background", color=color.new(color.blue, 95)) // Calculate and view Trend Filter float tradeConditionMa = switch trendFilterType "EMA" => ta.ema(close, trendFilterPeriodInput) "SMA" => ta.sma(close, trendFilterPeriodInput) "RMA" => ta.rma(close, trendFilterPeriodInput) "WMA" => ta.wma(close, trendFilterPeriodInput) // Default used when the three first cases do not match. => ta.wma(close, trendFilterPeriodInput) trendConditionLong = trendFilterInput ? close > tradeConditionMa : true trendConditionShort = trendFilterInput ? close < tradeConditionMa : true plot(trendFilterInput ? tradeConditionMa : na, color=color.yellow) // Calculate and view Volatility Filter stdDevClose = ta.stdev(close,volatilityFilterStDevLength) volatilityCondition = volatilityFilterInput ? stdDevClose > ta.sma(stdDevClose,volatilityStDevMaLength) : true bbLowerCrossUnder = ta.crossunder(close, bbLower) bbUpperCrossOver = ta.crossover(close, bbUpper) bgcolor(volatilityCondition ? na : color.new(color.red, 95)) // Date Filter start = input(timestamp("2017-01-01"), "Start", group="Date Filter") finish = input(timestamp("2050-01-01"), "End", group="Date Filter") date_filter = true // Entry and Exit Conditions entryLongCondition = bbUpperCrossOver and trendConditionLong and volatilityCondition and date_filter and roc_filter entryShortCondition = bbLowerCrossUnder and trendConditionShort and volatilityCondition and date_filter and roc_filter exitLongCondition = bbLowerCrossUnder exitShortCondition = bbUpperCrossOver // Orders if entryLongCondition strategy.entry("EL", strategy.long) if entryShortCondition strategy.entry("ES", strategy.short) if exitLongCondition strategy.close("EL") if exitShortCondition strategy.close("ES") // Long SL/TP/TS xl_ts_percent = input.float(2,step=0.5, title= "TS", group="Exit Long", inline="LTS", tooltip="Trailing Treshold %") xl_to_percent = input.float(0.5, step=0.5, title= "TO", group="Exit Long", inline="LTS", tooltip="Trailing Offset %") xl_ts_tick = xl_ts_percent * close/syminfo.mintick/100 xl_to_tick = xl_to_percent * close/syminfo.mintick/100 xl_sl_percent = input.float (2, step=0.5, title="SL",group="Exit Long", inline="LSLTP") xl_tp_percent = input.float(9, step=0.5, title="TP",group="Exit Long", inline="LSLTP") xl_sl_price = strategy.position_avg_price * (1-xl_sl_percent/100) xl_tp_price = strategy.position_avg_price * (1+xl_tp_percent/100) strategy.exit("XL+SL/TP", "EL", stop=xl_sl_price, limit=xl_tp_price, trail_points=xl_ts_tick, trail_offset=xl_to_tick,comment_loss= "XL-SL", comment_profit = "XL-TP",comment_trailing = "XL-TS") // Short SL/TP/TS xs_ts_percent = input.float(2,step=0.5, title= "TS",group="Exit Short", inline ="STS", tooltip="Trailing Treshold %") xs_to_percent = input.float(0.5, step=0.5, title= "TO",group="Exit Short", inline ="STS", tooltip="Trailing Offset %") xs_ts_tick = xs_ts_percent * close/syminfo.mintick/100 xs_to_tick = xs_to_percent * close/syminfo.mintick/100 xs_sl_percent = input.float (2, step=0.5, title="SL",group="Exit Short", inline="ESSLTP", tooltip="Stop Loss %") xs_tp_percent = input.float(9, step=0.5, title="TP",group="Exit Short", inline="ESSLTP", tooltip="Take Profit %") xs_sl_price = strategy.position_avg_price * (1+xs_sl_percent/100) xs_tp_price = strategy.position_avg_price * (1-xs_tp_percent/100) strategy.exit("XS+SL/TP", "ES", stop=xs_sl_price, limit=xs_tp_price, trail_points=xs_ts_tick, trail_offset=xs_to_tick,comment_loss= "XS-SL", comment_profit = "XS-TP",comment_trailing = "XS-TS") max_intraday_loss = input.int(10, title="Max Intraday Loss (Percent)", group="Risk Management") //strategy.risk.max_intraday_loss(max_intraday_loss, strategy.percent_of_equity) // Monthly Returns table, modified from QuantNomad. Please put calc_on_every_tick = true to plot it. monthly_table(int results_prec, bool results_dark) => new_month = month(time) != month(time[1]) new_year = year(time) != year(time[1]) eq = strategy.equity bar_pnl = eq / eq[1] - 1 cur_month_pnl = 0.0 cur_year_pnl = 0.0 // Current Monthly P&L cur_month_pnl := new_month ? 0.0 : (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 // Current Yearly P&L cur_year_pnl := new_year ? 0.0 : (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 // Arrays to store Yearly and Monthly P&Ls var month_pnl = array.new_float(0) var month_time = array.new_int(0) var year_pnl = array.new_float(0) var year_time = array.new_int(0) last_computed = false if (not na(cur_month_pnl[1]) and (new_month or barstate.islast)) if (last_computed[1]) array.pop(month_pnl) array.pop(month_time) array.push(month_pnl , cur_month_pnl[1]) array.push(month_time, time[1]) if (not na(cur_year_pnl[1]) and (new_year or barstate.islast)) if (last_computed[1]) array.pop(year_pnl) array.pop(year_time) array.push(year_pnl , cur_year_pnl[1]) array.push(year_time, time[1]) last_computed := barstate.islast ? true : nz(last_computed[1]) // Monthly P&L Table var monthly_table = table(na) cell_hr_bg_color = results_dark ? #0F0F0F : #F5F5F5 cell_hr_text_color = results_dark ? #D3D3D3 : #555555 cell_border_color = results_dark ? #000000 : #FFFFFF // ell_hr_bg_color = results_dark ? #0F0F0F : #F5F5F5 // cell_hr_text_color = results_dark ? #D3D3D3 : #555555 // cell_border_color = results_dark ? #000000 : #FFFFFF if (barstate.islast) monthly_table := table.new(position.bottom_right, columns = 14, rows = array.size(year_pnl) + 1, bgcolor=cell_hr_bg_color,border_width=1,border_color=cell_border_color) table.cell(monthly_table, 0, 0, syminfo.tickerid + " " + timeframe.period, text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 1, 0, "Jan", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 2, 0, "Feb", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 3, 0, "Mar", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 4, 0, "Apr", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 5, 0, "May", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 6, 0, "Jun", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 7, 0, "Jul", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 8, 0, "Aug", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 9, 0, "Sep", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 10, 0, "Oct", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 11, 0, "Nov", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 12, 0, "Dec", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 13, 0, "Year", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) for yi = 0 to array.size(year_pnl) - 1 table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) y_color = array.get(year_pnl, yi) > 0 ? color.lime : array.get(year_pnl, yi) < 0 ? color.red : color.gray table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, results_prec)), bgcolor = y_color) for mi = 0 to array.size(month_time) - 1 m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 m_col = month(array.get(month_time, mi)) m_color = array.get(month_pnl, mi) > 0 ? color.lime : array.get(month_pnl, mi) < 0 ? color.red : color.gray table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, results_prec)), bgcolor = m_color) results_prec = input(2, title = "Precision", group="Results Table") results_dark = input.bool(defval=true, title="Dark Mode", group="Results Table") monthly_table(results_prec, results_dark)