La stratégie de renversement du profil des oscillateurs 3 10.0 identifie les renversements de prix potentiels en calculant les indicateurs MACD sur différentes périodes.
La stratégie calcule les moyennes mobiles SMA de 3 et 10 périodes pour construire des lignes rapides et lentes et l'indicateur MACD et la ligne de signal. Lorsque la ligne rapide et la ligne de signal traversent la ligne zéro vers le haut ou vers le bas, elle indique que le prix a atteint un point critique et qu'un renversement peut se produire. En outre, elle intègre également le jugement de la pression du volume, l'indice RSI, etc. pour identifier la fiabilité des signaux de renversement.
Plus précisément, la stratégie évalue les renversements de prix à travers:
Lorsque la fiabilité du signal d'inversion est élevée, la stratégie adopte un stop loss suivant la tendance pour poursuivre un profit plus élevé.
La stratégie présente les avantages suivants:
Il y a aussi des risques:
Les risques peuvent être réduits par:
La stratégie peut être encore optimisée par:
La stratégie d'inversion MACD multi-temporelle de passage à zéro prend en compte de manière exhaustive les indicateurs de prix, de volume et de volatilité pour déterminer le moment de l'entrée grâce à une évaluation multi-indicateurs. Elle définit un stop-loss opportun sur une rentabilité suffisante. Elle peut obtenir de bons rendements pendant les marchés d'inversion.
/*backtest start: 2023-02-11 00:00:00 end: 2024-02-17 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("3 10.0 Oscillator Profile Flagging", shorttitle="3 10.0 Oscillator Profile Flagging", overlay=false) signalBiasValue = input(title="Signal Bias", defval=0.26) macdBiasValue = input(title="MACD Bias", defval=0.8) shortLookBack = input( title="Short LookBack", defval=3) longLookBack = input( title="Long LookBack", defval=10.0) takeProfit = input( title="Take Profit", defval=0.8) stopLoss = input( title="Stop Loss", defval=0.75) fast_ma = ta.sma(close, 3) slow_ma = ta.sma(close, 10) macd = fast_ma - slow_ma signal = ta.sma(macd, 16) hline(0, "Zero Line", color = color.black) buyVolume = volume*((close-low)/(high-low)) sellVolume = volume*((high-close)/(high-low)) buyVolSlope = buyVolume - buyVolume[1] sellVolSlope = sellVolume - sellVolume[1] signalSlope = ( signal - signal[1] ) macdSlope = ( macd - macd[1] ) plot(macd, color=color.blue, title="Total Volume") plot(signal, color=color.orange, title="Total Volume") intrabarRange = high - low rsi = ta.rsi(close, 14) rsiSlope = rsi - rsi[1] getRSISlopeChange(lookBack) => j = 0 for i = 0 to lookBack if ( rsi[i] - rsi[ i + 1 ] ) > -5 j += 1 j getBuyerVolBias(lookBack) => j = 0 for i = 1 to lookBack if buyVolume[i] > sellVolume[i] j += 1 j getSellerVolBias(lookBack) => j = 0 for i = 1 to lookBack if sellVolume[i] > buyVolume[i] j += 1 j getVolBias(lookBack) => float b = 0.0 float s = 0.0 for i = 1 to lookBack b += buyVolume[i] s += sellVolume[i] b > s getSignalBuyerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] > signalBiasValue j += 1 j getSignalSellerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < ( 0.0 - signalBiasValue ) j += 1 j getSignalNoBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < signalBiasValue and signal[i] > ( 0.0 - signalBiasValue ) j += 1 j getPriceRising(lookBack) => j = 0 for i = 1 to lookBack if close[i] > close[i + 1] j += 1 j getPriceFalling(lookBack) => j = 0 for i = 1 to lookBack if close[i] < close[i + 1] j += 1 j getRangeNarrowing(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] < intrabarRange[i + 1] j+= 1 j getRangeBroadening(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] > intrabarRange[i + 1] j+= 1 j bool isNegativeSignalReversal = signalSlope < 0.0 and signalSlope[1] > 0.0 bool isNegativeMacdReversal = macdSlope < 0.0 and macdSlope[1] > 0.0 bool isPositiveSignalReversal = signalSlope > 0.0 and signalSlope[1] < 0.0 bool isPositiveMacdReversal = macdSlope > 0.0 and macdSlope[1] < 0.0 bool hasBearInversion = signalSlope > 0.0 and macdSlope < 0.0 bool hasBullInversion = signalSlope < 0.0 and macdSlope > 0.0 bool hasSignalBias = math.abs(signal) >= signalBiasValue bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0.0 - signalBiasValue ) bool hasSignalBuyerBias = hasSignalBias and signal > 0.0 bool hasSignalSellerBias = hasSignalBias and signal < 0.0 bool hasPositiveMACDBias = macd > macdBiasValue bool hasNegativeMACDBias = macd < ( 0.0 - macdBiasValue ) bool hasBullAntiPattern = ta.crossunder(macd, signal) bool hasBearAntiPattern = ta.crossover(macd, signal) bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 ) bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 ) // 393.60 Profit 52.26% 15m if ( hasBullInversion and rsiSlope > 1.5 and volume > 300000.0 ) strategy.entry("15C1", strategy.long, qty=10.0) strategy.exit("TPS", "15C1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss) // 356.10 Profit 51,45% 15m if ( getVolBias(shortLookBack) == false and rsiSlope > 3.0 and signalSlope > 0) strategy.entry("15C2", strategy.long, qty=10.0) strategy.exit("TPS", "15C2", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss) // 124 Profit 52% 15m if ( rsiSlope < -11.25 and macdSlope < 0.0 and signalSlope < 0.0) strategy.entry("15P1", strategy.short, qty=10.0) strategy.exit("TPS", "15P1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss) // 455.40 Profit 49% 15m if ( math.abs(math.abs(macd) - math.abs(signal)) < .1 and buyVolume > sellVolume and hasBullInversion) strategy.entry("15P2", strategy.short, qty=10.0) strategy.exit("TPS", "15P2", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss)