यह आलेख एक मात्रात्मक व्यापारिक रणनीति का परिचय देता है जो सरल चलती औसत (एसएमए) और अनुकूलनशील चलती औसत (एएलएमए) को जोड़ती है। यह रणनीति कई तकनीकी संकेतकों को शामिल करती है और विभिन्न पैरामीटर सेटिंग्स के आधार पर व्यापार संकेत उत्पन्न करती है।
I. रणनीतिक सिद्धांत
इस रणनीति का मूल विभिन्न पैरामीटर सेटिंग्स के साथ एसएमए और एएलएमए का संयोजन है। एसएमए एक बहुत ही आम ट्रेंड-फॉलोइंग संकेतक है जो समय की अवधि में समापन कीमतों के अंकगणितीय औसत की गणना करके प्रवृत्ति की दिशा और गति को दर्शाता है। एएलएमए ऐतिहासिक कीमतों का औसत करने में एसएमए के समान है, लेकिन इसमें दो समायोज्य पैरामीटर, α और σ जोड़े गए हैं, जो इसे एसएमए की तुलना में बाजार परिवर्तनों के लिए अधिक संवेदनशील बनाते हैं।
रणनीति पहले क्रमशः अल्पकालिक, मध्यमकालिक और दीर्घकालिक रुझानों का प्रतिनिधित्व करने वाले तीन एसएमए की गणना करती है। साथ ही, यह विभिन्न समय सीमाओं पर चलती औसत का प्रतिनिधित्व करने के लिए तीन एएलएमए की गणना करती है। एसएमए और एएलएमए के बीच क्रॉसओवर संकेतकों के कई सेट बनाते हैं। जब अल्पकालिक एसएमए मध्यमकालिक एसएमए से पार होता है, तो एक खरीद संकेत उत्पन्न होता है। जब अल्पकालिक एसएमए मध्यमकालिक एसएमए से नीचे पार होता है, तो एक बेच संकेत उत्पन्न होता है। एएलएमए के समायोज्य मापदंडों के साथ, संकेत बाजार को अधिक तेजी से जवाब दे सकते हैं।
इसके अलावा, रिलेटिव स्ट्रेंथ इंडेक्स (आरएसआई) को ओवरबॉट और ओवरसोल्ड स्थितियों की पहचान करने में मदद करने के लिए पेश किया गया है। जब आरएसआई ओवरबॉट की सीमा से अधिक होता है, तो बाजार को ओवरबॉट माना जाता है। इस मामले में, भले ही एसएमए और एएलएमए खरीद संकेत उत्पन्न करते हैं, वे भ्रामक हो सकते हैं। इसी तरह, जब आरएसआई ओवरसोल्ड लाइन से कम होता है, तो संकेतकों से बेचने के संकेत रिबाउंड को याद कर सकते हैं। इसलिए आरएसआई का सहायक निर्णय कुछ फंसे हुए जोखिमों से बच सकता है।
एसएमए, एएलएमए और आरएसआई के पैरामीटर सेटिंग्स का व्यापक रूप से उपयोग करके, साथ ही विभिन्न मापदंडों के संकेतकों के बीच क्रॉस संयोजन, अपेक्षाकृत संवेदनशील ट्रेडिंग रणनीति संकेतों का गठन किया जा सकता है। इसके अलावा, आरएसआई से ओवरबॉट और ओवरसोल्ड निर्णय प्रवेश समय को और अनुकूलित कर सकते हैं और फंसने की संभावना को कम कर सकते हैं।
II. रणनीति के फायदे
इस रणनीति का सबसे बड़ा लाभ सूचक मापदंडों का लचीला संयोजन और अनुप्रयोग है। एसएमए और एएलएमए दोनों विभिन्न प्रकार के चलती औसत का प्रतिनिधित्व करने के लिए मापदंडों को समायोजित करने में लचीले हैं। आरएसआई मापदंडों को समायोजित करके संकेतों की आवृत्ति को भी नियंत्रित कर सकता है। इन संकेतकों का संयोजन एक दूसरे का पूरक है और ट्रेडिंग सिग्नल बनाता है, जो प्रविष्टियों के समय को अनुकूलित कर सकता है।
एक एकल एसएमए संकेतक की तुलना में, एएलएमए बाजार परिवर्तनों के प्रति संवेदनशीलता को बढ़ाता है और प्रवृत्ति उलटों पर तेजी से प्रतिक्रिया दे सकता है। इसके अलावा, सहायक आरएसआई निर्णय आगे चलती औसत से संकेतों के अंधेरे पालन से बचता है। इसलिए, इस रणनीति में समग्र रूप से अपेक्षाकृत मजबूत अनुकूलन और अनुकूलन क्षमताएं हैं।
एक और लाभ रणनीति के संकेत स्रोतों की विविधता है। विभिन्न समय सीमाओं पर एसएमए और एएलएमए के बीच बातचीत रणनीति के लिए बहु-स्तरित संदर्भ प्रदान करती है। यह कुछ हद तक यादृच्छिक बाजार शोर को फ़िल्टर कर सकता है और संकेतों को अधिक विश्वसनीय बना सकता है।
सामान्य तौर पर, इस रणनीति में लचीले पैरामीटर होते हैं और स्थिर संकेत उत्पन्न होते हैं, जिससे यह विभिन्न उत्पादों में एल्गोरिथम ट्रेडिंग के लिए उपयुक्त होता है।
III. संभावित जोखिम
यद्यपि इस रणनीति के कुछ फायदे हैं, फिर भी इसे व्यवहार में लागू करते समय कुछ जोखिमों को ध्यान में रखा जाना चाहिए।
सबसे पहले, सूचक सेटिंग्स के कारण ओवर-ऑप्टिमाइज़ेशन की समस्याएं। एसएमए, एएलएमए और आरएसआई स्वतंत्र रूप से समायोज्य हैं, लेकिन अनुचित ट्यूनिंग से ओवर-ऑप्टिमाइज़ेशन और बाजार में दीर्घकालिक संरचनात्मक परिवर्तनों के अनुकूल होने में असमर्थता हो सकती है। इसके लिए केवल अल्पकालिक परिणामों का पीछा करने के बजाय विभिन्न उत्पादों की विशेषताओं के आधार पर सावधानीपूर्वक पैरामीटर सेटिंग्स की आवश्यकता होती है।
दूसरा, रणनीति संकेतों में विलंब हो सकता है। यद्यपि ALMA SMA की तुलना में तेजी से प्रतिक्रिया करता है, फिर भी एक निश्चित विलंब है। तेजी से बदलते बाजारों में, इसका परिणाम इष्टतम प्रवेश समय को याद करना हो सकता है। यहां हम अनुकूलित करने के लिए कुछ प्रमुख संकेतकों को जोड़ने पर विचार कर सकते हैं।
अंत में, कई संकेतकों से आने वाले विरोधाभासी संकेतों पर ध्यान देना आवश्यक है। कुछ समय में, विभिन्न संकेतकों से विरोधाभासी संकेत मिल सकते हैं। अनुभव के आधार पर स्पष्ट प्राथमिकता नियमों को हल करने की आवश्यकता है।
संक्षेप में, यह रणनीति सही नहीं है और अभी भी व्यवहार में निरंतर समायोजन और अनुकूलन की आवश्यकता है। लेकिन इसकी लचीली पैरामीटर सेटिंग्स और कई संकेतक संयोजनों के फायदे इसे दीर्घकालिक के लिए एक व्यवहार्य एल्गोरिथम ट्रेडिंग सिस्टम बनाते हैं।
IV. सारांश
इस लेख में, हमने एक मात्रात्मक ट्रेडिंग रणनीति का विस्तार से परिचय दिया है जो एसएमए, एएलएमए और आरएसआई को जोड़ती है। संकेतकों के लचीले संयोजन के माध्यम से, यह संकेत बनाता है जो बाजारों के प्रति संवेदनशील होते हैं। एकल संकेतकों की तुलना में, इसमें अधिक अनुकूलन क्षमता और शोर फ़िल्टरिंग क्षमताएं हैं। लेकिन हमें ओवर-ऑप्टिमाइज़ेशन, सिग्नल लेग और निर्णय त्रुटियों जैसे संभावित मुद्दों पर भी ध्यान देने की आवश्यकता है। कुल मिलाकर, यह रणनीति उचित रूप से निर्मित है और निरंतर अनुकूलन के माध्यम से स्थिर एल्गोरिथम ट्रेडिंग संकेत उत्पन्न कर सकती है।
/*backtest start: 2023-09-06 00:00:00 end: 2023-09-13 00:00:00 period: 5m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //The plotchar UP/DOWN Arrows is the crossover of the fastest MA and fastest IIR MAs // //The dots at the bottom are the two simple averages crossing over // //The count over/under the candles is the count of bars that the SMAs on their //respective resolution are fanning out. // //The colored background indicates a squeeze, lime=kinda tight : green=very tight squeeze. based on the 3 IIRs // //To answer my own question in a forum, looking at the code, i couldn't figure out how to get it from another timeframe //and run the same calculations with the same results. My answer in the end was to scale the chosen MA length //in the corresponding CurrentPeriod/ChosenMAPeriod proportion. This results in the same line in the same place when browsing through the //different time resolutions. Somebody might find this invaluable // //The counts are for MA's fanning out, or going parabolic. Theres IIRs, Almas, one done of the other. A lot. //The arrows above and below bars are from standard RSI numbers for OB/OS // //The IIRs changes color depending on their slope, which can be referenced easily with a variable. // //The backgrond on a bar-by-bar basis is colored when 2 sets of moving averages are in a squeeze, aka //when price is consolidating. // //This aims to help the trader combine conditions and entry criteria of the trade and explore these options visually. //They detail things from all time-frames on the current one. I prefer it because of the fractal nature of price-action, both large and small, //either yesterday or last year. For best results, go long in short-term trades when the long-term trend is also up. //and other profitable insights. This is also a great example of an automation algorith. // //The pretty ribbon is my script called 'Trading With Colors'. Use them together for fanciest results. 55/233 is my Fib Cross (golden/death) Compare it to the classic 50/200 if //you get bored. I believe it simply works better, at least for Crypto. // //Evidently, I am a day-trader. But this yields higher profits on larger time-frames anyways, so do play around with it. Find what works for you. //Thanks and credit for code snippets goes to: //matryskowal //ChrisMoody, probably twice //Alex Orekhov (everget) //author=LucF and midtownsk8rguy, for PineCoders //If you use code from this, real quick search for perhaps the original and give them a shoutout too. I may have missed something //Author: Sean Duffy //@version=4 strategy(title = "Combination Parabolic MA/IIR/ALMA Strategy", shorttitle = "MA-QuickE", overlay = true, backtest_fill_limits_assumption = 0, default_qty_type = strategy.cash, default_qty_value = 1000, initial_capital = 1000, currency = currency.USD, linktoseries = true) // calc_on_order_fills = true, // calc_on_every_tick = true, // Input Variables showFIBMAs = input(false, type=input.bool, title="═══════════════ Show Fibby MAs ═══════════════") maRes = input(960, type=input.integer, title="MA-Cross Resolution") mal1 = input(8, type=input.integer, title="MA#1 Length") mal2 = input(13, type=input.integer, title="MA#2 Length") mal3 = input(34, type=input.integer, title="MA#3 Length") loosePercentClose = input(1.1, type=input.float, title="SMA LooseSqueeze Percent") showIIRs = input(false, type=input.bool, title="═══════════════════ Show IIRs ═══════════════════") iirRes = input(60, type=input.integer, title="IIR Resolution") percentClose = input(title="IIR Squeeze PercentClose", type=input.float, defval=.8) iirlength1 = input(title="IIR Length 1", type=input.integer, defval=34) iirlength2 = input(title="IIR Length 2", type=input.integer, defval=144)//input(title="ATR Period", type=input.integer, defval=1) iirlength3 = input(title="IIR Length 3", type=input.integer, defval=720)//input(title="ATR Period", type=input.integer, defval=1) showIIR1 = input(true, type=input.bool, title="Show IIR1") showIIR2 = input(true, type=input.bool, title="Show IIR2") showIIR3 = input(true, type=input.bool, title="Show IIR3") showCounts = input(true, type=input.bool, title="═════════════ Show Parabolic MA Counts ════════════") showSignals = input(true, type=input.bool, title="══════════════ Show Buy/Sell Signals ══════════════") showBackground = input(true, type=input.bool, title="══════════════ Show Background Colors ══════════════") //runStrategy = input(true, type=input.bool, title="══════════════ Run Strategy ══════════════") debug = input(false, type=input.bool, title="══════════════ Show Debug ══════════════") barLookbackPeriod = input(title="══ Bar Lookback Period ══", type=input.integer, defval=5) percentageLookbackPeriod = input(title="══ Percentage Lookback Period ══", type=input.integer, defval=1) bullcolor = color.green bearcolor = color.red color bgcolor = na var bool slope1Green = na var bool slope2Green = na var bool slope3Green = na var bool buySignal = na var bool sellSignal = na var bool bigbuySignal = na var bool bigsellSignal = na bool smbuySignal = false bool smsellSignal = false var bool insqueeze = na var bool intightsqueeze = na var bool infastsqueeze = na var bool awaitingEntryIn = false // My counting variables var int count1 = 0 var float madist1 = 0 var int count2 = 0 var float madist2 = 0 var int sinceSmSignal = 0 var entryPrice = 0.0 var entryBarIndex = 0 var stopLossPrice = 0.0 // var updatedEntryPrice = 0.0 // var alertOpenPosition = false // var alertClosePosition = false // var label stopLossPriceLabel = na // var line stopLossPriceLine = na positionType = "LONG" // Strategy type, and the only current option hasOpenPosition = strategy.opentrades != 0 hasNoOpenPosition = strategy.opentrades == 0 strategyClose() => if (hasOpenPosition) if positionType == "LONG" strategy.close("LONG", when=true) else strategy.close("SHORT", when=true) strategyOpen() => if (hasNoOpenPosition) if positionType == "LONG" strategy.entry("LONG", strategy.long, when=true) else strategy.entry("SHORT", strategy.short, when=true) checkEntry() => buysignal = false if (hasNoOpenPosition) strategyOpen() buysignal := true // if (slope1Green and (trend1Green or trend2Green) and awaitingEntryIn and hasNoOpenPosition) // strategyOpen() // buysignal := true buysignal checkExit() => sellsignal = false // if (trend1Green == false and trend2Green == false) // to later have quicker exit strategy // sellsignal := true // strategyClose() if (hasOpenPosition) sellsignal := true strategyClose() sellsignal multiplier(_adjRes, _adjLength) => // returns adjusted length multiplier = _adjRes/timeframe.multiplier round(_adjLength*multiplier) //reset the var variables before new calculations buySignal := false sellSignal := false smbuySignal := false smsellSignal := false bigbuySignal := false bigsellSignal := false ma1 = sma(close, multiplier(maRes, mal1)) ma2 = sma(close, multiplier(maRes, mal2)) ma3 = sma(close, multiplier(maRes, mal3)) madist1 := abs(ma1 - ma2) madist2 := abs(ma1 - ma3) // check if MA's are fanning/going parabolic if (ma1 >= ma2 and ma2 >= ma3 and madist1[0] > madist1[1]) //and abs(dataB - dataC >= madist2) // dataA must be higher than b, and distance between gaining, same with C count1 := count1 + 1 else count1 := 0 if (ma1 <= ma2 and ma2 <= ma3 and madist1[0] > madist1[1]) //<= madist2 and dataB <= dataC) //and abs(dataB - dataC >= madist2) // dataA must be higher than b, and distance between gaining, same with C count2 := count2 + 1 else count2 := 0 crossoverAB = crossover(ma1, ma2) crossunderAB = crossunder(ma1, ma2) plot(showFIBMAs ? ma1 : na, linewidth=3) plot(showFIBMAs ? ma2 : na) plot(showFIBMAs ? ma3 : na) // Fast Squeese Check WORK IN PROGRESS // float singlePercent = close / 100 if max(madist1, madist2) <= singlePercent*loosePercentClose bgcolor := color.yellow infastsqueeze := true else infastsqueeze := false // IIR MOVING AVERAGE f(a) => a[0] // fixes mutable error iirma(iirlength, iirsrc) => cf = 2*tan(2*3.14159*(1/iirlength)/2) a0 = 8 + 8*cf + 4*pow(cf,2) + pow(cf,3) a1 = -24 - 8*cf + 4*pow(cf,2) + 3*pow(cf,3) a2 = 24 - 8*cf - 4*pow(cf,2) + 3*pow(cf,3) a3 = -8 + 8*cf - 4*pow(cf,2) + pow(cf,3) //---- c = pow(cf,3)/a0 d0 = -a1/a0 d1 = -a2/a0 d2 = -a3/a0 //---- out = 0. out := nz(c*(iirsrc + iirsrc[3]) + 3*c*(iirsrc[1] + iirsrc[2]) + d0*out[1] + d1*out[2] + d2*out[3],iirsrc) f(out) iirma1 = iirma(multiplier(iirRes, iirlength1), close) iirma2 = iirma(multiplier(iirRes, iirlength2), close) iirma3 = iirma(multiplier(iirRes, iirlength3), close) // adjusts length for current resolution now, length is lengthened/shortened accordingly, upholding exact placement of lines // iirmaD1 = security(syminfo.tickerid, tostring(iirRes), iirma1, barmerge.gaps_on, barmerge.lookahead_on) // iirmaD2 = security(syminfo.tickerid, tostring(iirRes), iirma2, barmerge.gaps_on, barmerge.lookahead_on) // iirmaD3 = security(syminfo.tickerid, tostring(iirRes), iirma3, barmerge.gaps_on, barmerge.lookahead_on) slope1color = slope1Green ? color.lime : color.blue slope2color = slope2Green ? color.lime : color.blue slope3color = slope3Green ? color.lime : color.blue plot(showIIR1 and showIIRs ? iirma1 : na, title="IIR1", color=slope1color, linewidth=2, transp=30) plot(showIIR2 and showIIRs ? iirma2 : na, title="IIR2", color=slope2color, linewidth=3, transp=30) plot(showIIR3 and showIIRs ? iirma3 : na, title="IIR3", color=slope3color, linewidth=4, transp=30) // checks slope of IIRs to create a boolean variable and and color it differently if (iirma1[0] >= iirma1[1]) slope1Green := true else slope1Green := false if (iirma2[0] >= iirma2[1]) slope2Green := true else slope2Green := false if (iirma3[0] >= iirma3[1]) slope3Green := true else slope3Green := false // calculate space between IIRs and then if the price jumps above both //float singlePercent = close / 100 // = a single percent var float distIIR1 = na var float distIIR2 = na distIIR1 := abs(iirma1 - iirma2) distIIR2 := abs(iirma1 - iirma3) if (distIIR1[0] < percentClose*singlePercent and close[0] >= iirma1[0]) if close[0] >= iirma2[0] and close[0] >= iirma3[0] bgcolor := color.green insqueeze := true intightsqueeze := true else bgcolor := color.lime insqueeze := true intightsqueeze := false else insqueeze := false intightsqueeze := false // if (true)//sinceSmSignal > 0) // cutting down on fastest MAs noise // sinceSmSignal := sinceSmSignal + 1 // if (crossoverAB) // //checkEntry() // //smbuySignal := true // sinceSmSignal := 0 // if (crossunderAB) // and all NOT greennot (slope1Green and slope2Green and slope3Green) // //checkExit() // //smsellSignal := true // sinceSmSignal := 0 // else // sinceSmSignal := sinceSmSignal + 1 f_draw_infopanel(_x, _y, _line, _text, _color)=> _rep_text = "" for _l = 0 to _line _rep_text := _rep_text + "\n" _rep_text := _rep_text + _text var label _la = na label.delete(_la) _la := label.new( x=_x, y=_y, text=_rep_text, xloc=xloc.bar_time, yloc=yloc.price, color=color.black, style=label.style_labelup, textcolor=_color, size=size.normal) posx = timenow + round(change(time)*60) posy = highest(50) // CONSTRUCTION ZONE // TODO: program way to eliminate noise and false signals // MAYBEDO: program it to differentiate between a moving average bump and a cross // I think the best way would be to calculate the tangent line... OR // Take the slope of both going back a couple bars and if it's close enough, its a bounce off // and an excellent entry signal // program in quickest exit, 2 bars next to eachother both closing under, as to avoid a single wick from // prompting to close the trade // Some other time, have it move SMA up or down depending on whether trending up or down. Then use those MA crosses //THIS CHECKS THE SLOPE FROM CURRENT PRICE TO BACK 10 BARS checkSlope(_series) => (_series[0]/_series[10])*100 // it now returns it as a percentage doNewX = input(true, type=input.bool, title="══════════ Show misc MA Cross Strategy ══════════") iirX = input(13, title="IIRx Length: ", type=input.integer) iirXperiod = input(21, title="IIRx Period/TF: ", type=input.integer) iirX2 = input(144, title="IIRx2 Length: ", type=input.integer) iirX2period = input(233, title="IIRx2 Period/TF: ", type=input.integer) //15 almaXperiod = input(defval=21, title="Alma of IIR1 Period: ", type=input.integer) almaXalpha = input(title="Alma Alpha Value: ", defval=.99, maxval=.99, type=input.float) almaXsigma = input(title="Alma Sigma Value: ", defval=8, type=input.float) iirmaOTF = iirma(multiplier(iirXperiod, iirX), close) iirma2OTF = iirma(multiplier(iirX2period, iirX2), close) smaOTF = alma(iirmaOTF, almaXperiod, almaXalpha, almaXsigma) // maybe dont touch, its precise // I took the ALMA of the IIRMA, and i hope thats not cheating ;) // I could have removed this. the multiplier function adjusts the length to fit the current timeframe while displaying the same // smaXOTF = security(syminfo.tickerid, smaXperiod, smaOTF, barmerge.gaps_on, barmerge.lookahead_on) // iirmaXOTF = security(syminfo.tickerid, iirXperiod, iirmaOTF, barmerge.gaps_on, barmerge.lookahead_on) // iirmaX2OTF = security(syminfo.tickerid, iirX2period, iirma2OTF, barmerge.gaps_on, barmerge.lookahead_on) plot(doNewX ? smaOTF : na, title="FastMA X-Over : ", color=color.blue, linewidth=1, transp=40) plot(doNewX ? iirmaOTF : na, title="IIR MAx : ", color=color.purple, linewidth=1, transp=30) plot(doNewX ? iirma2OTF : na, title="IIR MAx : ", color=color.purple, linewidth=2, transp=20) iirma2Up = iirma2OTF[0] > iirma2OTF[1] // just another slope up/down variable. //calculate spaces between averages distiiralma = abs(iirmaOTF - smaOTF) crossoverFast = crossover(iirmaOTF[0], smaOTF[0]) // and (iirmaOTF[1] <= smaOTF[1]) crossunderFast = crossunder(iirmaOTF[0], smaOTF[0]) // and (iirmaOTF[1] >= smaOTF[1]) if (crossoverFast and iirma2Up == true) // and (count1 != 0))// or close[0] < (lowest(barLookbackPeriod) + singlePercent*3))) // must be at most a few percent up from a recent low. Avoid buying highs :P buySignal := true strategyOpen() // if (slope1Green and slope2Green and slope3Green and infastsqueeze == false) // checkEntry() if (crossunderFast) sellSignal := true checkExit() // I feel like I didn't cite the OG author for this panel correctly. I hope I did, but there are extentions of his/her work in multiple places. // I could have gotten it confused. if (debug) f_draw_infopanel(posx, posy, 18, "distiiralma from IIR: " + tostring(distiiralma), color.lime) //f_draw_infopanel(posx, posy, 16, "distiirs: " + tostring(distiirX1), color.lime) f_draw_infopanel(posx, posy, 14, "Value of iirmaOTF: " + tostring(iirmaOTF), color.lime) f_draw_infopanel(posx, posy, 6, "slope X: " + tostring(abs(100 - checkSlope(iirmaOTF))), color.lime) f_draw_infopanel(posx, posy, 12, "value of smaOTF: " + tostring(smaOTF), color.lime) f_draw_infopanel(posx, posy, 6, "slopeAlma: " + tostring(abs(100 - checkSlope(smaOTF))), color.lime) f_draw_infopanel(posx, posy, 2, "slopeIIR2 " + tostring(abs(100 - checkSlope(iirma2OTF))), color.lime) f_draw_infopanel(posx, posy, 2, "slopeIIR2 " + tostring(abs(100 - checkSlope(iirma2OTF))), color.lime) // I kept this separate because it discludes the calculations. Its hard to hold a train of thought while fishing for the right section bgcolor(showBackground ? bgcolor : na) plotshape(showSignals ? buySignal : na, location=location.bottom, style=shape.circle, text="", size=size.tiny, color=color.blue, transp=60) plotshape(showSignals ? sellSignal : na, location=location.bottom, style=shape.circle, text="", size=size.tiny, color=color.red, transp=60) plotchar(showSignals and smbuySignal, title="smBuy", location=location.belowbar, char='↑', size=size.tiny, color=color.green, transp=0) plotchar(showSignals and smsellSignal, title="smSell", location=location.abovebar, char='↓', size=size.tiny, color=color.orange, transp=0) // can not display a variable. Can only match the count to a corresponding plotchar // to display a non-constant variable, use the debug box, which was so kindly offered up by our community. plotchar(showCounts and count1==1, title='', char='1', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==2, title='', char='2', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==3, title='', char='3', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==4, title='', char='4', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==5, title='', char='5', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==6, title='', char='6', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==7, title='', char='7', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==8, title='', char='8', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1==9, title='', char='9', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count1>=10, title='', char='$', location=location.belowbar, color=#2c9e2c, transp=0) plotchar(showCounts and count2==1, title='', char='1', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==2, title='', char='2', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==3, title='', char='3', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==4, title='', char='4', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==5, title='', char='5', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==6, title='', char='6', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==7, title='', char='7', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==8, title='', char='8', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2==9, title='', char='9', location=location.abovebar, color=#e91e63, transp=0) plotchar(showCounts and count2>=10, title='', char='$', location=location.abovebar, color=#e91e63, transp=0) showRSIind = input(true, type=input.bool, title="═══════════════════ Show RSI Arrows ═══════════════════") // Get user input rsiSource = input(title="RSI Source", type=input.source, defval=close) rsiLength = input(title="RSI Length", type=input.integer, defval=14) rsiOverbought = input(title="RSI Overbought Level", type=input.integer, defval=80) rsiOversold = input(title="RSI Oversold Level", type=input.integer, defval=20) // Get RSI value rsiValue = rsi(rsiSource, rsiLength) isRsiOB = rsiValue >= rsiOverbought isRsiOS = rsiValue <= rsiOversold // Plot signals to chart plotshape(isRsiOB, title="Overbought", location=location.abovebar, color=color.red, transp=0, style=shape.triangledown) plotshape(isRsiOS, title="Oversold", location=location.belowbar, color=color.green, transp=0, style=shape.triangleup) //reset the var variables before new calculations buySignal := false sellSignal := false smbuySignal := false smsellSignal := false bigbuySignal := false bigsellSignal := false