Sumber daya yang dimuat... Pemuatan...

Penelitian tentang Binance Futures Multi-Values Hedging Strategy Bagian 2

Penulis:Kebaikan, Dibuat: 2020-05-09 16:03:01, Diperbarui: 2024-12-12 21:00:59

img

Alamat laporan penelitian asli:https://www.fmz.com/digest-topic/5584Anda dapat membacanya terlebih dahulu, artikel ini tidak akan memiliki konten duplikat. Artikel ini akan menyoroti proses pengoptimalan strategi kedua. Setelah pengoptimalan, strategi kedua jelas ditingkatkan, disarankan untuk meningkatkan strategi sesuai dengan artikel ini. Mesin backtest menambahkan statistik biaya penanganan.

# Libraries to import
import pandas as pd
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
symbols = ['ETH', 'BCH', 'XRP', 'EOS', 'LTC', 'TRX', 'ETC', 'LINK', 'XLM', 'ADA', 'XMR', 'DASH', 'ZEC', 'XTZ', 'BNB', 'ATOM', 'ONT', 'IOTA', 'BAT', 'VET', 'NEO', 'QTUM', 'IOST']
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/20227de6c1d10cb9dd1.csv ', index_col = 0)
price_usdt.index = pd.to_datetime(price_usdt.index)
price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,]
price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0)
price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange:
    
    def __init__(self, trade_symbols, leverage=20, commission=0.00005,  initial_balance=10000, log=False):
        self.initial_balance = initial_balance # Initial asset
        self.commission = commission
        self.leverage = leverage
        self.trade_symbols = trade_symbols
        self.date = ''
        self.log = log
        self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit'])
        self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount, msg=''):
        if self.date and self.log:
            print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg))
            
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        
        self.account['USDT']['realised_profit'] -= price*amount*self.commission # Minus handling fee
        self.account['USDT']['fee'] += price*amount*self.commission
        self.account[symbol]['fee'] += price*amount*self.commission
        
        if cover_amount > 0: # close position first
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  # Profit
            self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage # Free margin
            
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['margin'] -=  cover_amount*self.account[symbol]['hold_price']/self.leverage
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account['USDT']['margin'] +=  open_amount*price/self.leverage            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
            self.account[symbol]['margin'] +=  open_amount*price/self.leverage
            
        self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
        self.account[symbol]['price'] = price
        self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price
        
        return True
    
    def Buy(self, symbol, price, amount, msg=''):
        self.Trade(symbol, 1, price, amount, msg)
        
    def Sell(self, symbol, price, amount, msg=''):
        self.Trade(symbol, -1, price, amount, msg)
        
    def Update(self, date, close_price): # Update assets
        self.date = date
        self.close = close_price
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            if np.isnan(close_price[symbol]):
                continue
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
            if self.date.hour in [0,8,16]:
                pass
                self.account['USDT']['realised_profit'] += -self.account[symbol]['amount']*close_price[symbol]*0.01/100
        
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
        self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage
        self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]

Kinerja strategi asli, setelah pemilihan jenis mata uang, berjalan dengan baik, tetapi masih ada banyak posisi kepemilikan, umumnya sekitar 4 kali

Prinsipnya:

  • Perbarui kutipan pasar dan posisi penyimpanan akun, harga awal akan dicatat pada run pertama (mata uang yang baru ditambahkan dihitung sesuai dengan waktu bergabung)
  • Perbarui indeks, indeks adalah indeks harga altcoin-bitcoin = rata-rata (jumlah ((harga altcoin / harga bitcoin) / (harga awal altcoin / harga awal bitcoin))
  • Menghakimi operasi panjang dan pendek berdasarkan indeks penyimpangan, dan menilai ukuran posisi berdasarkan ukuran penyimpangan
  • Menempatkan pesanan, jumlah pesanan ditentukan oleh strategi komisi gunung es, dan transaksi dilaksanakan sesuai dengan harga terbaru yang dapat dilaksanakan.
  • Berputar lagi.
trade_symbols = list(set(symbols)-set(['LINK','XTZ','BCH', 'ETH'])) # Remaining currencies
price_usdt_btc_norm_mean = price_usdt_btc_norm[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.0005,log=False)
trade_value = 300
for row in price_usdt.iloc[:].iterrows():
    e.Update(row[0], row[1])
    empty_value = 0
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        empty_value += now_value
        if aim_value - now_value > 20:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -20:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2b = e
(stragey_2b.df['total']/stragey_2b.initial_balance).plot(figsize=(17,6),grid = True);

img

stragey_2b.df['leverage'].plot(figsize=(18,6),grid = True); # leverage

img

pd.DataFrame(e.account).T.apply(lambda x:round(x,3)) # holding position

img

Mengapa memperbaiki

Masalah terbesar awalnya adalah perbandingan antara harga terbaru dan harga awal yang dimulai oleh strategi. Seiring berjalannya waktu, itu akan menjadi lebih dan lebih menyimpang. Kita akan mengumpulkan banyak posisi dalam mata uang ini. Masalah terbesar dengan menyaring mata uang adalah bahwa kita mungkin masih memiliki mata uang unik di masa depan berdasarkan pengalaman masa lalu kita. Berikut adalah kinerja mode non-penyaringan. Sebenarnya, ketika trade_value = 300, di tahap tengah dari strategi berjalan, itu sudah kehilangan segalanya. Bahkan jika tidak, LINK dan XTZ juga memegang posisi di atas 10000USDT, yang terlalu besar. Oleh karena itu, kita harus memecahkan masalah ini di backtest dan lulus tes semua mata uang.

trade_symbols = list(set(symbols)) # Remaining currencies
price_usdt_btc_norm_mean = price_usdt_btc_norm[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.0005,log=False)
trade_value = 300
for row in price_usdt.iloc[:].iterrows():
    e.Update(row[0], row[1])
    empty_value = 0
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        empty_value += now_value
        if aim_value - now_value > 20:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -20:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2c = e
(stragey_2c.df['total']/stragey_2c.initial_balance).plot(figsize=(17,6),grid = True);

img

pd.DataFrame(stragey_2c.account).T.apply(lambda x:round(x,3)) # Last holding position

img

((price_usdt_btc_norm.iloc[-1:] - price_usdt_btc_norm_mean[-1]).T) # Each currency deviates from the initial situation

img

Karena penyebab masalah adalah untuk membandingkan dengan harga awal, itu mungkin lebih dan lebih bias. kita dapat membandingkannya dengan moving average dari periode waktu yang lalu, backtest mata uang penuh dan melihat hasil di bawah ini.

Alpha = 0.05
#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #Ordinary moving average
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() # Here is consistent with the strategy, using EMA
trade_symbols = list(set(symbols))#All currencies
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.0005,log=False)
trade_value = 300
for row in price_usdt.iloc[:].iterrows():
    e.Update(row[0], row[1])
    empty_value = 0
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        empty_value += now_value
        if aim_value - now_value > 20:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -20:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2d = e
#print(N,stragey_2d.df['total'][-1],pd.DataFrame(stragey_2d.account).T.apply(lambda x:round(x,3))['value'].sum())

Kinerja strategi telah sepenuhnya memenuhi harapan kami, dan pengembalian hampir sama. Situasi posisi akun pecah dalam mata uang asli dari seluruh mata uang juga telah transisi dengan lancar, dan hampir tidak ada retracement. Ukuran posisi pembukaan yang sama, hampir semua leverage di bawah 1 kali, pada 12 Maret 2020 harga terjun kasus ekstrim, itu masih tidak melebihi 4 kali, yang berarti bahwa kita dapat meningkatkan trade_value, dan di bawah leverage yang sama, menggandakan keuntungan. Posisi kepemilikan akhir hanya BCH melebihi 1000USDT, yang sangat baik.

Mengapa posisi akan diturunkan? Bayangkan bergabung dengan indeks altcoin tidak berubah, satu koin telah meningkat 100%, dan itu akan dipertahankan untuk waktu yang lama. Strategi asli akan memegang posisi pendek 300 * 100 = 30000USDT untuk waktu yang lama, dan strategi baru akhirnya akan melacak harga acuan Pada harga terbaru, Anda tidak akan memegang posisi pada akhirnya.

(stragey_2d.df['total']/stragey_2d.initial_balance).plot(figsize=(17,6),grid = True);
#(stragey_2c.df['total']/stragey_2c.initial_balance).plot(figsize=(17,6),grid = True);

img

stragey_2d.df['leverage'].plot(figsize=(18,6),grid = True);
stragey_2b.df['leverage'].plot(figsize=(18,6),grid = True); # Screen currency strategy leverage

img

pd.DataFrame(stragey_2d.account).T.apply(lambda x:round(x,3))

img

Apa yang akan terjadi pada mata uang dengan mekanisme skrining, dengan parameter yang sama, keuntungan tahap sebelumnya berkinerja lebih baik, retracement lebih kecil, tetapi pengembalian keseluruhan sedikit lebih rendah.

#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(50).mean()
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=0.05).mean()
trade_symbols = list(set(symbols)-set(['LINK','XTZ','BCH', 'ETH'])) # Remaining currencies
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.0005,log=False)
trade_value = 300
for row in price_usdt.iloc[:].iterrows():
    e.Update(row[0], row[1])
    empty_value = 0
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        empty_value += now_value
        if aim_value - now_value > 20:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -20:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2e = e
#(stragey_2d.df['total']/stragey_2d.initial_balance).plot(figsize=(17,6),grid = True);
(stragey_2e.df['total']/stragey_2e.initial_balance).plot(figsize=(17,6),grid = True);

img

stragey_2e.df['leverage'].plot(figsize=(18,6),grid = True);

img

pd.DataFrame(stragey_2e.account).T.apply(lambda x:round(x,3))

img

Optimasi parameter

Semakin besar pengaturan parameter Alpha dari rata-rata bergerak eksponensial, semakin sensitif pelacakan harga acuan, semakin sedikit transaksi, semakin rendah posisi kepemilikan akhir. ketika menurunkan leverage, pengembalian juga berkurang. Menurunkan retracement maksimum, dapat meningkatkan volume transaksi. Operasi saldo spesifik perlu berdasarkan hasil backtest.

Karena backtest adalah garis 1h K, hanya dapat diperbarui satu kali dalam satu jam, pasar nyata dapat diperbarui lebih cepat, dan perlu untuk menimbang pengaturan spesifik secara komprehensif.

Ini hasil dari optimasi:

for Alpha in [i/100 for i in range(1,30)]:
    #price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() # Ordinary moving average
    price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() # Here is consistent with the strategy, using EMA
    trade_symbols = list(set(symbols))# All currencies
    price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
    e = Exchange(trade_symbols,initial_balance=10000,commission=0.0005,log=False)
    trade_value = 300
    for row in price_usdt.iloc[:].iterrows():
        e.Update(row[0], row[1])
        empty_value = 0
        for symbol in trade_symbols:
            price = row[1][symbol]
            if np.isnan(price):
                continue
            diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
            aim_value = -trade_value*round(diff/0.01,1)
            now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
            empty_value += now_value
            if aim_value - now_value > 20:
                e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
            if aim_value - now_value < -20:
                e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
    stragey_2d = e
    # These are the final net value, the initial maximum backtest, the final position size, and the handling fee
    print(Alpha, round(stragey_2d.account['USDT']['total'],1), round(1-stragey_2d.df['total'].min()/stragey_2d.initial_balance,2),round(pd.DataFrame(stragey_2d.account).T['value'].sum(),1),round(stragey_2d.account['USDT']['fee']))
0.01 21116.2 0.14 15480.0 2178.0
0.02 20555.6 0.07 12420.0 2184.0
0.03 20279.4 0.06 9990.0 2176.0
0.04 20021.5 0.04 8580.0 2168.0
0.05 19719.1 0.03 7740.0 2157.0
0.06 19616.6 0.03 7050.0 2145.0
0.07 19344.0 0.02 6450.0 2133.0
0.08 19174.0 0.02 6120.0 2117.0
0.09 18988.4 0.01 5670.0 2104.0
0.1 18734.8 0.01 5520.0 2090.0
0.11 18532.7 0.01 5310.0 2078.0
0.12 18354.2 0.01 5130.0 2061.0
0.13 18171.7 0.01 4830.0 2047.0
0.14 17960.4 0.01 4770.0 2032.0
0.15 17779.8 0.01 4531.3 2017.0
0.16 17570.1 0.01 4441.3 2003.0
0.17 17370.2 0.01 4410.0 1985.0
0.18 17203.7 0.0 4320.0 1971.0
0.19 17016.9 0.0 4290.0 1955.0
0.2 16810.6 0.0 4230.6 1937.0
0.21 16664.1 0.0 4051.3 1921.0
0.22 16488.2 0.0 3930.6 1902.0
0.23 16378.9 0.0 3900.6 1887.0
0.24 16190.8 0.0 3840.0 1873.0
0.25 15993.0 0.0 3781.3 1855.0
0.26 15828.5 0.0 3661.3 1835.0
0.27 15673.0 0.0 3571.3 1816.0
0.28 15559.5 0.0 3511.3 1800.0
0.29 15416.4 0.0 3481.3 1780.0

Berkaitan

Lebih banyak