Hanya simulasi kasar, sehingga semua orang memiliki konsep tertentu dari jumlah hilang margin Anda dapat men-download notebook dan mengunggahnya ke lingkungan penelitian FMZ, dan menjalankan kode sendiri.
Pertama lihat laporan asli:https://www.fmz.com/digest-topic/5584dan laporan yang lebih baik:https://www.fmz.com/digest-topic/5588
Strategi ini telah berbagi publik selama 4 hari sekarang. Tahap awal dilakukan dengan sangat baik, dengan pengembalian yang tinggi dan sedikit retracements, sehingga banyak pengguna menggunakan leverage yang sangat tinggi untuk bertaruh pengembalian 10% per hari. Namun, seperti yang dinyatakan dalam laporan awal, tidak ada strategi yang sempurna. Menjual pendek lebih naik dan membeli panjang lebih turun tren menggunakan karakteristik altcoin untuk naik dan jatuh bersama-sama. Jika mata uang bergerak keluar dari tren yang unik, itu akan mengumpulkan banyak posisi pegangan. meskipun rata-rata bergerak digunakan untuk melacak harga awal, risiko masih ada. Laporan ini terutama mengukur risiko spesifik dan mengapa parameter yang direkomendasikan trade_value menyumbang 3% dari total dana.
Untuk menyoroti kode, kita menempatkan di tingkat lanjut dari bagian ini, semua orang harus mencoba pertama menjalankan kode berikut (mulai dari bagian perpustakaan impor).
Untuk simulasi, kita berasumsi ada 20 mata uang, tetapi hanya perlu menambahkan BTC dan ETH, dan menggunakan BTC untuk mewakili 19 mata uang dengan harga konstan. ETH mewakili mata uang dengan mata uang tren independen. Karena hanya simulasi, tidak perlu melacak harga awal dengan moving average di sini, dengan asumsi bahwa harga naik dengan kecepatan cepat.
Pertama, simulasi situasi di mana harga mata uang tunggal terus meningkat. Stop_loss menunjukkan bahwa stop loss menyimpang. Ini hanya simulasi. Situasi sebenarnya akan memiliki retracement intermiten, tidak akan seburuk simulasi.
Misalkan tidak ada retracement ke mata uang ini, ketika deviasi stop loss adalah 0,41, ETH telah naik 44% pada saat ini, dan hasilnya akhirnya hilang 7 kali dari nilai perdagangan, yaitu trade_value * 7. Jika trade_value ditetapkan menjadi 3% dari total dana, maka loss = total dana * 0,03 * 7. Retracement maksimum adalah sekitar 0,03 * 7 = 21%.
Anda dapat memperkirakan toleransi risiko Anda sendiri berdasarkan hasil di bawah ini.
btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [i/100. for i in range(100,500)] # Ethereum, up 1% in one cycle
for stop_loss in [i/1000. for i in range(10,1500,50)]:
e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
trade_value = 300 # 300 transactions
for i in range(200):
index = (btc_price[i]*19+eth_price[i])/20. # index
e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]})
diff_btc = btc_price[i] - index # deviation
diff_eth = eth_price[i] - index
btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])
aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
aim_eth_value = -trade_value*round(diff_eth/0.01,1)
if aim_btc_value - btc_value > 20:
e.Buy('BTC',btc_price[i],(aim_btc_value - btc_value)/btc_price[i])
if aim_eth_value - eth_value < -20 and diff_eth < stop_loss:
e.Sell('ETH',eth_price[i], (eth_value-aim_eth_value)/eth_price[i],diff_eth)
if diff_eth > stop_loss and eth_value < 0: # Stop loss
stop_price = eth_price[i]
e.Buy('ETH',eth_price[i], (-eth_value)/eth_price[i],diff_eth)
print('Currency price:',stop_price,' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 1.02 Stop loss deviation: 0.01 Final balance: 9968.840396 Multiple of losing trade volume: 0.1
Currency price: 1.07 Stop loss deviation: 0.06 Final balance: 9912.862738 Multiple of losing trade volume: 0.3
Currency price: 1.12 Stop loss deviation: 0.11 Final balance: 9793.616067 Multiple of losing trade volume: 0.7
Currency price: 1.17 Stop loss deviation: 0.16 Final balance: 9617.477263 Multiple of losing trade volume: 1.3
Currency price: 1.23 Stop loss deviation: 0.21 Final balance: 9337.527299 Multiple of losing trade volume: 2.2
Currency price: 1.28 Stop loss deviation: 0.26 Final balance: 9051.5166 Multiple of losing trade volume: 3.2
Currency price: 1.33 Stop loss deviation: 0.31 Final balance: 8721.285267 Multiple of losing trade volume: 4.3
Currency price: 1.38 Stop loss deviation: 0.36 Final balance: 8350.582251 Multiple of losing trade volume: 5.5
Currency price: 1.44 Stop loss deviation: 0.41 Final balance: 7856.720861 Multiple of losing trade volume: 7.1
Currency price: 1.49 Stop loss deviation: 0.46 Final balance: 7406.412066 Multiple of losing trade volume: 8.6
Currency price: 1.54 Stop loss deviation: 0.51 Final balance: 6923.898356 Multiple of losing trade volume: 10.3
Currency price: 1.59 Stop loss deviation: 0.56 Final balance: 6411.276143 Multiple of losing trade volume: 12.0
Currency price: 1.65 Stop loss deviation: 0.61 Final balance: 5758.736222 Multiple of losing trade volume: 14.1
Currency price: 1.7 Stop loss deviation: 0.66 Final balance: 5186.230956 Multiple of losing trade volume: 16.0
Currency price: 1.75 Stop loss deviation: 0.71 Final balance: 4588.802975 Multiple of losing trade volume: 18.0
Currency price: 1.81 Stop loss deviation: 0.76 Final balance: 3841.792751 Multiple of losing trade volume: 20.5
Currency price: 1.86 Stop loss deviation: 0.81 Final balance: 3193.215479 Multiple of losing trade volume: 22.7
Currency price: 1.91 Stop loss deviation: 0.86 Final balance: 2525.155765 Multiple of losing trade volume: 24.9
Currency price: 1.96 Stop loss deviation: 0.91 Final balance: 1837.699982 Multiple of losing trade volume: 27.2
Currency price: 2.02 Stop loss deviation: 0.96 Final balance: 988.009942 Multiple of losing trade volume: 30.0
Currency price: 2.07 Stop loss deviation: 1.01 Final balance: 260.639618 Multiple of losing trade volume: 32.5
Currency price: 2.12 Stop loss deviation: 1.06 Final balance: -483.509646 Multiple of losing trade volume: 34.9
Currency price: 2.17 Stop loss deviation: 1.11 Final balance: -1243.486107 Multiple of losing trade volume: 37.5
Currency price: 2.24 Stop loss deviation: 1.16 Final balance: -2175.438384 Multiple of losing trade volume: 40.6
Currency price: 2.28 Stop loss deviation: 1.21 Final balance: -2968.19255 Multiple of losing trade volume: 43.2
Currency price: 2.33 Stop loss deviation: 1.26 Final balance: -3774.613275 Multiple of losing trade volume: 45.9
Currency price: 2.38 Stop loss deviation: 1.31 Final balance: -4594.305499 Multiple of losing trade volume: 48.6
Currency price: 2.44 Stop loss deviation: 1.36 Final balance: -5594.651063 Multiple of losing trade volume: 52.0
Currency price: 2.49 Stop loss deviation: 1.41 Final balance: -6441.474964 Multiple of losing trade volume: 54.8
Currency price: 2.54 Stop loss deviation: 1.46 Final balance: -7299.652662 Multiple of losing trade volume: 57.7
Dalam mensimulasikan situasi penurunan terus menerus, penurunan disertai dengan penurunan nilai kontrak, sehingga risiko lebih tinggi daripada kenaikan, dan ketika harga turun, tingkat peningkatan kerugian meningkat. Ketika nilai penyimpangan stop loss adalah -0,31, harga mata uang turun sebesar 33% pada saat ini, dan kerugian 6,5 transaksi. Jika jumlah perdagangan trade_value ditetapkan menjadi 3% dari total dana, retracement maksimum adalah sekitar 0,03 * 6,5 = 19,5%.
btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [2-i/100. for i in range(100,200)] # Ethereum
for stop_loss in [-i/1000. for i in range(10,1000,50)]:
e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
trade_value = 300 # 300 transactions
for i in range(100):
index = (btc_price[i]*19+eth_price[i])/20. # index
e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]})
diff_btc = btc_price[i] - index # deviation
diff_eth = eth_price[i] - index
btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])
aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
aim_eth_value = -trade_value*round(diff_eth/0.01,1)
if aim_btc_value - btc_value < -20:
e.Sell('BTC',btc_price[i],-(aim_btc_value - btc_value)/btc_price[i])
if aim_eth_value - eth_value > 20 and diff_eth > stop_loss:
e.Buy('ETH',eth_price[i], -(eth_value-aim_eth_value)/eth_price[i],diff_eth)
if diff_eth < stop_loss and eth_value > 0:
e.Sell('ETH',eth_price[i], (eth_value)/eth_price[i],diff_eth)
stop_price = eth_price[i]
print('Currency price:',round(stop_price,2),' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 0.98 Stop loss deviation: -0.01 Final balance: 9983.039091 Multiple of losing trade volume: 0.1
Currency price: 0.93 Stop loss deviation: -0.06 Final balance: 9922.200148 Multiple of losing trade volume: 0.3
Currency price: 0.88 Stop loss deviation: -0.11 Final balance: 9778.899361 Multiple of losing trade volume: 0.7
Currency price: 0.83 Stop loss deviation: -0.16 Final balance: 9545.316075 Multiple of losing trade volume: 1.5
Currency price: 0.77 Stop loss deviation: -0.21 Final balance: 9128.800213 Multiple of losing trade volume: 2.9
Currency price: 0.72 Stop loss deviation: -0.26 Final balance: 8651.260863 Multiple of losing trade volume: 4.5
Currency price: 0.67 Stop loss deviation: -0.31 Final balance: 8037.598952 Multiple of losing trade volume: 6.5
Currency price: 0.62 Stop loss deviation: -0.36 Final balance: 7267.230651 Multiple of losing trade volume: 9.1
Currency price: 0.56 Stop loss deviation: -0.41 Final balance: 6099.457595 Multiple of losing trade volume: 13.0
Currency price: 0.51 Stop loss deviation: -0.46 Final balance: 4881.767442 Multiple of losing trade volume: 17.1
Currency price: 0.46 Stop loss deviation: -0.51 Final balance: 3394.414792 Multiple of losing trade volume: 22.0
Currency price: 0.41 Stop loss deviation: -0.56 Final balance: 1575.135344 Multiple of losing trade volume: 28.1
Currency price: 0.35 Stop loss deviation: -0.61 Final balance: -1168.50508 Multiple of losing trade volume: 37.2
Currency price: 0.29 Stop loss deviation: -0.66 Final balance: -4071.007983 Multiple of losing trade volume: 46.9
Currency price: 0.25 Stop loss deviation: -0.71 Final balance: -7750.361195 Multiple of losing trade volume: 59.2
Currency price: 0.19 Stop loss deviation: -0.76 Final balance: -13618.366286 Multiple of losing trade volume: 78.7
Currency price: 0.14 Stop loss deviation: -0.81 Final balance: -20711.473968 Multiple of losing trade volume: 102.4
Currency price: 0.09 Stop loss deviation: -0.86 Final balance: -31335.965608 Multiple of losing trade volume: 137.8
Currency price: 0.04 Stop loss deviation: -0.91 Final balance: -51163.223715 Multiple of losing trade volume: 203.9
Currency price: 0.04 Stop loss deviation: -0.96 Final balance: -81178.565715 Multiple of losing trade volume: 303.9
# Libraries to import
import pandas as pd
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/20227de6c1d10cb9dd1.csv ', index_col = 0)
price_usdt.index = pd.to_datetime(price_usdt.index)
price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,]
price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0)
price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange:
def __init__(self, trade_symbols, leverage=20, commission=0.00005, initial_balance=10000, log=False):
self.initial_balance = initial_balance # Initial asset
self.commission = commission
self.leverage = leverage
self.trade_symbols = trade_symbols
self.date = ''
self.log = log
self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit'])
self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}}
for symbol in trade_symbols:
self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0}
def Trade(self, symbol, direction, price, amount, msg=''):
if self.date and self.log:
print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg))
cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
open_amount = amount - cover_amount
self.account['USDT']['realised_profit'] -= price*amount*self.commission # Minus handling fee
self.account['USDT']['fee'] += price*amount*self.commission
self.account[symbol]['fee'] += price*amount*self.commission
if cover_amount > 0: # close positions first
self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount # profit
self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage # Free margin
self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
self.account[symbol]['amount'] -= -direction*cover_amount
self.account[symbol]['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage
self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
if open_amount > 0:
total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
total_amount = direction*self.account[symbol]['amount']+open_amount
self.account['USDT']['margin'] += open_amount*price/self.leverage
self.account[symbol]['hold_price'] = total_cost/total_amount
self.account[symbol]['amount'] += direction*open_amount
self.account[symbol]['margin'] += open_amount*price/self.leverage
self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
self.account[symbol]['price'] = price
self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price
return True
def Buy(self, symbol, price, amount, msg=''):
self.Trade(symbol, 1, price, amount, msg)
def Sell(self, symbol, price, amount, msg=''):
self.Trade(symbol, -1, price, amount, msg)
def Update(self, date, close_price): # Update assets
self.date = date
self.close = close_price
self.account['USDT']['unrealised_profit'] = 0
for symbol in self.trade_symbols:
if np.isnan(close_price[symbol]):
continue
self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
self.account[symbol]['price'] = close_price[symbol]
self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage
self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]