이 전략은 트렌드 식별 및 거래 신호를 위해 하이킨-아시 촛불과 PSAR 지표를 결합합니다. 중장기 트렌드를 캡처하는 것을 목표로 트렌드 반전을 감지하기 위해 PSAR와 하이킨-아시 노이즈 필터를 사용합니다.
전략 논리:
헤이킨아시를 계산해 보세요. 열고, 닫고, 높고, 낮게
촛불 색깔은 중간 황소/곰 추세를 결정합니다.
PSAR를 계산하고 하킨-아시 가격을 넘을 때 트렌드 반전을 식별합니다.
PSAR 하락 추세에 장거리, PSAR 상승 추세에 단거리
PSAR는 새로운 고도/하도와 가속 요인에 따라 적응합니다.
장점:
조합은 정확도를 향상시킵니다. 하이킨-아시가 소음을 필터하고, PSAR는 역전을 감지합니다.
변화하는 시장 조건에 적응 가능한 PSAR
명확한 규칙은 매개 변수 최적화에 도움이 됩니다.
위험성:
헤이킨-아시와 PSAR가 뒤떨어지면 최고의 엔트리를 놓칠 수 있습니다.
PSAR는 불규칙한 트렌드에서 잘못된 신호에 유연합니다.
위프사 (Whipsaws) 를 방어하기 위해 엄격한 위험 관리가 필요합니다.
요약하자면, 이 전략은 트렌드 컨텍스트에 대한 하이킨-아시와 타이밍에 대한 PSAR을 결합합니다. 지연 및 잘못된 신호는 주의가 필요하지만 장기적인 안정적 인 이익을 위해 최적화를 통해 극복 할 수 있습니다.
/*backtest start: 2023-08-12 00:00:00 end: 2023-09-11 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 strategy("QuantNomad - Heikin-Ashi PSAR Strategy", shorttitle = "HA-PSAR[QN]", overlay = false) //////////// // INPUTS // start = input(0.02, title = "PSAR Start") increment = input(0.02, title = "PSAR Increment") maximum = input(0.2, title = "PSAR Max") start_year = input(2018, 'Start Year', input.integer) start_month = input(1, 'Start Month', input.integer) start_day = input(1, 'Start Day', input.integer) end_year = input(2100, 'End Year', input.integer) end_month = input(1, 'End Month', input.integer) end_day = input(1, 'End Day', input.integer) date_start = timestamp(start_year, start_month, start_day, 00, 00) date_end = timestamp(end_year, end_month, end_day, 00, 00) // if time is in correct period time_cond = time >= date_start and time <= date_end // Calculation HA Values haopen = 0.0 haclose = (open + high + low + close) / 4 haopen := na(haopen[1]) ? (open + close) / 2 : (haopen[1] + haclose[1]) / 2 hahigh = max(high, max(haopen, haclose)) halow = min(low, min(haopen, haclose)) // HA colors hacolor = haclose > haopen ? color.green : color.red psar = 0.0 // PSAR af = 0.0 // Acceleration Factor trend_dir = 0 // Current direction of PSAR ep = 0.0 // Extreme point trend_bars = 0 sar_long_to_short = trend_dir[1] == 1 and haclose <= psar[1] // PSAR switches from long to short sar_short_to_long = trend_dir[1] == -1 and haclose >= psar[1] // PSAR switches from short to long trend_change = barstate.isfirst[1] or sar_long_to_short or sar_short_to_long // Calculate trend direction trend_dir := barstate.isfirst[1] and haclose[1] > haopen[1] ? 1 : barstate.isfirst[1] and haclose[1] <= haopen[1] ? -1 : sar_long_to_short ? -1 : sar_short_to_long ? 1 : nz(trend_dir[1]) trend_bars := sar_long_to_short ? -1 : sar_short_to_long ? 1 : trend_dir == 1 ? nz(trend_bars[1]) + 1 : trend_dir == -1 ? nz(trend_bars[1]) - 1 : nz(trend_bars[1]) // Calculate Acceleration Factor af := trend_change ? start : (trend_dir == 1 and hahigh > ep[1]) or (trend_dir == -1 and low < ep[1]) ? min(maximum, af[1] + increment) : af[1] // Calculate extreme point ep := trend_change and trend_dir == 1 ? hahigh : trend_change and trend_dir == -1 ? halow : trend_dir == 1 ? max(ep[1], hahigh) : min(ep[1], halow) // Calculate PSAR psar := barstate.isfirst[1] and haclose[1] > haopen[1] ? halow[1] : barstate.isfirst[1] and haclose[1] <= haopen[1] ? hahigh[1] : trend_change ? ep[1] : trend_dir == 1 ? psar[1] + af * (ep - psar[1]) : psar[1] - af * (psar[1] - ep) plotcandle(haopen, hahigh, halow, haclose, title = "HA", color = hacolor) plot(psar, style=plot.style_cross, color=trend_dir == 1 ? color.green : color.red, linewidth = 2) // Strategy strategy.entry("long", true, when = sar_short_to_long and time_cond) strategy.entry("short", false, when = sar_long_to_short and time_cond)