Bollinger Bands Breakout Strategy adalah strategi tren jangka pendek yang dioptimumkan untuk perdagangan kripto. Ia menggunakan penunjuk Bollinger Bands yang mapan sebagai penjana isyarat teras dan mampu mengambil kedua-dua kedudukan panjang dan pendek. Dengan mekanisme pengurusan risiko yang komprehensif, ia adalah sistem perdagangan automatik yang mantap yang sesuai untuk pasaran trend.
Strategi ini mempunyai tahap konfigurasi yang tinggi, termasuk parameter Bollinger Bands, pelbagai penapis, tetapan mengambil keuntungan / berhenti kerugian dan ambang kerugian maksimum intraday.
Strategi ini berpusat di sekitar penunjuk Bollinger Bands, yang mengira jalur tengah, jalur atas dan jalur bawah yang berfungsi sebagai proksi untuk purata harga dan had turun naik.
Di samping itu, pelbagai penapis dilaksanakan untuk mengelakkan isyarat palsu:
Penapis Trend: panjang di atas purata bergerak, pendek di bawah purata bergerak
Penapis Volatiliti: hanya berdagang apabila volatiliti berkembang
Penapis Arah: boleh dikonfigurasi untuk arah panjang sahaja, pendek sahaja atau kedua-dua arah
Rate of Change Filter: pergerakan harga yang mencukupi daripada penutupan sebelumnya diperlukan
Penapis Tarikh: untuk spesifikasi jangka masa backtesting
Keluar diuruskan melalui mengambil keuntungan, menghentikan kerugian dan mekanisme berhenti menyusul untuk mengunci keuntungan dan mengehadkan kerugian.
Kelebihan utama strategi ini termasuk:
Indikator Bollinger Bands yang boleh dipercayai sebagai isyarat teras
Penapis yang boleh disesuaikan menghalang perdagangan yang tidak diingini
Reka bentuk stop loss/take profit yang komprehensif
Perlindungan kerugian dalam hari maksimum terhadap pengeluaran yang melampau
Berkembang di pasaran trend dengan potensi keuntungan
Walaupun kelebihan, beberapa risiko masih kekal:
Whipsaws di sekitar Bollinger Bands boleh membawa kepada kerugian
Penapis yang terlalu kaku mengurangkan perdagangan di pasaran terhad
Celah boleh menghentikan kedudukan secara preventif
Pergerakan melampau tidak boleh dielakkan sepenuhnya
Pengurangan termasuk penyesuaian penapis, campur tangan manual dan hentian tweaked.
Kemungkinan pengoptimuman untuk strategi ini:
Cari kombinasi parameter yang optimum
Memperkenalkan pembelajaran mesin untuk pengoptimuman adaptif
Penyelidikan kaedah berhenti rugi yang lebih baik e.g. hentian turun naik
Menggabungkan sentimen untuk membimbing tindakan pertimbangan
Menggunakan instrumen korelasi untuk arbitraj statistik
Bollinger Bands Breakout Strategy adalah sistem yang telah diuji untuk perdagangan trend jangka pendek. Dengan menggabungkan kelebihan isyarat Bollinger Bands dan penapis yang berhati-hati, ia menghasilkan entri berkualiti untuk trend sambil mengelakkan isyarat palsu. Mekanisme pengurusan risiko yang komprehensif juga mengandungi penarikan dengan berkesan. Dengan peningkatan berterusan, strategi ini berpotensi menjadi sistem perdagangan automatik yang hebat.
/*backtest start: 2022-11-22 00:00:00 end: 2023-11-04 05:20:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Bollinger Bands - Breakout Strategy",overlay=true ) // Define the length of the Bollinger Bands bbLengthInput = input.int (15,title="Length", group="Bollinger Bands", inline="BB") bbDevInput = input.float (2.0,title="StdDev", group="Bollinger Bands", inline="BB") // Define the settings for the Trend Filter trendFilterInput = input.bool(false, title="Above/Below", group = "Trend Filter", inline="Trend") trendFilterPeriodInput = input(223,title="", group = "Trend Filter", inline="Trend") trendFilterType = input.string (title="", defval="EMA",options=["EMA","SMA","RMA", "WMA"], group = "Trend Filter", inline="Trend") volatilityFilterInput = input.bool(true,title="StdDev", group = "Volatility Filter", inline="Vol") volatilityFilterStDevLength = input(15,title="",group = "Volatility Filter", inline="Vol") volatilityStDevMaLength = input(15,title=">MA",group = "Volatility Filter", inline="Vol") // ROC Filter // f_security function by LucF for PineCoders available here: https://www.tradingview.com/script/cyPWY96u-How-to-avoid-repainting-when-using-security-PineCoders-FAQ/ f_security(_sym, _res, _src, _rep) => request.security(_sym, _res, _src[not _rep and barstate.isrealtime ? 1 : 0])[_rep or barstate.isrealtime ? 0 : 1] high_daily = f_security(syminfo.tickerid, "D", high, false) roc_enable = input.bool(false, "", group="ROC Filter from CloseD", inline="roc") roc_threshold = input.float(1, "Treshold", step=0.5, group="ROC Filter from CloseD", inline="roc") closed = f_security(syminfo.tickerid,"1D",close, false) roc_filter= roc_enable ? (close-closed)/closed*100 > roc_threshold : true // Trade Direction Filter // tradeDirectionInput = input.string("Auto",options=["Auto", "Long&Short","Long Only", "Short Only"], title="Trade", group="Direction Filter", tooltip="Auto: if a PERP is detected (in the symbol description), trade long and short\n Otherwise as per user-input") // tradeDirection = switch tradeDirectionInput // "Auto" => str.contains(str.lower(syminfo.description), "perp") or str.contains(str.lower(syminfo.description), ".p") ? strategy.direction.all : strategy.direction.long // "Long&Short" => strategy.direction.all // "Long Only" => strategy.direction.long // "Short Only" => strategy.direction.short // => strategy.direction.all // strategy.risk.allow_entry_in(tradeDirection) // Calculate and plot the Bollinger Bands [bbMiddle, bbUpper, bbLower] = ta.bb (close, bbLengthInput, bbDevInput) plot(bbMiddle, "Basis", color=color.orange) bbUpperPlot = plot(bbUpper, "Upper", color=color.blue) bbLowerrPlot = plot(bbLower, "Lower", color=color.blue) fill(bbUpperPlot, bbLowerrPlot, title = "Background", color=color.new(color.blue, 95)) // Calculate and view Trend Filter float tradeConditionMa = switch trendFilterType "EMA" => ta.ema(close, trendFilterPeriodInput) "SMA" => ta.sma(close, trendFilterPeriodInput) "RMA" => ta.rma(close, trendFilterPeriodInput) "WMA" => ta.wma(close, trendFilterPeriodInput) // Default used when the three first cases do not match. => ta.wma(close, trendFilterPeriodInput) trendConditionLong = trendFilterInput ? close > tradeConditionMa : true trendConditionShort = trendFilterInput ? close < tradeConditionMa : true plot(trendFilterInput ? tradeConditionMa : na, color=color.yellow) // Calculate and view Volatility Filter stdDevClose = ta.stdev(close,volatilityFilterStDevLength) volatilityCondition = volatilityFilterInput ? stdDevClose > ta.sma(stdDevClose,volatilityStDevMaLength) : true bbLowerCrossUnder = ta.crossunder(close, bbLower) bbUpperCrossOver = ta.crossover(close, bbUpper) bgcolor(volatilityCondition ? na : color.new(color.red, 95)) // Date Filter start = input(timestamp("2017-01-01"), "Start", group="Date Filter") finish = input(timestamp("2050-01-01"), "End", group="Date Filter") date_filter = true // Entry and Exit Conditions entryLongCondition = bbUpperCrossOver and trendConditionLong and volatilityCondition and date_filter and roc_filter entryShortCondition = bbLowerCrossUnder and trendConditionShort and volatilityCondition and date_filter and roc_filter exitLongCondition = bbLowerCrossUnder exitShortCondition = bbUpperCrossOver // Orders if entryLongCondition strategy.entry("EL", strategy.long) if entryShortCondition strategy.entry("ES", strategy.short) if exitLongCondition strategy.close("EL") if exitShortCondition strategy.close("ES") // Long SL/TP/TS xl_ts_percent = input.float(2,step=0.5, title= "TS", group="Exit Long", inline="LTS", tooltip="Trailing Treshold %") xl_to_percent = input.float(0.5, step=0.5, title= "TO", group="Exit Long", inline="LTS", tooltip="Trailing Offset %") xl_ts_tick = xl_ts_percent * close/syminfo.mintick/100 xl_to_tick = xl_to_percent * close/syminfo.mintick/100 xl_sl_percent = input.float (2, step=0.5, title="SL",group="Exit Long", inline="LSLTP") xl_tp_percent = input.float(9, step=0.5, title="TP",group="Exit Long", inline="LSLTP") xl_sl_price = strategy.position_avg_price * (1-xl_sl_percent/100) xl_tp_price = strategy.position_avg_price * (1+xl_tp_percent/100) strategy.exit("XL+SL/TP", "EL", stop=xl_sl_price, limit=xl_tp_price, trail_points=xl_ts_tick, trail_offset=xl_to_tick,comment_loss= "XL-SL", comment_profit = "XL-TP",comment_trailing = "XL-TS") // Short SL/TP/TS xs_ts_percent = input.float(2,step=0.5, title= "TS",group="Exit Short", inline ="STS", tooltip="Trailing Treshold %") xs_to_percent = input.float(0.5, step=0.5, title= "TO",group="Exit Short", inline ="STS", tooltip="Trailing Offset %") xs_ts_tick = xs_ts_percent * close/syminfo.mintick/100 xs_to_tick = xs_to_percent * close/syminfo.mintick/100 xs_sl_percent = input.float (2, step=0.5, title="SL",group="Exit Short", inline="ESSLTP", tooltip="Stop Loss %") xs_tp_percent = input.float(9, step=0.5, title="TP",group="Exit Short", inline="ESSLTP", tooltip="Take Profit %") xs_sl_price = strategy.position_avg_price * (1+xs_sl_percent/100) xs_tp_price = strategy.position_avg_price * (1-xs_tp_percent/100) strategy.exit("XS+SL/TP", "ES", stop=xs_sl_price, limit=xs_tp_price, trail_points=xs_ts_tick, trail_offset=xs_to_tick,comment_loss= "XS-SL", comment_profit = "XS-TP",comment_trailing = "XS-TS") max_intraday_loss = input.int(10, title="Max Intraday Loss (Percent)", group="Risk Management") //strategy.risk.max_intraday_loss(max_intraday_loss, strategy.percent_of_equity) // Monthly Returns table, modified from QuantNomad. Please put calc_on_every_tick = true to plot it. monthly_table(int results_prec, bool results_dark) => new_month = month(time) != month(time[1]) new_year = year(time) != year(time[1]) eq = strategy.equity bar_pnl = eq / eq[1] - 1 cur_month_pnl = 0.0 cur_year_pnl = 0.0 // Current Monthly P&L cur_month_pnl := new_month ? 0.0 : (1 + cur_month_pnl[1]) * (1 + bar_pnl) - 1 // Current Yearly P&L cur_year_pnl := new_year ? 0.0 : (1 + cur_year_pnl[1]) * (1 + bar_pnl) - 1 // Arrays to store Yearly and Monthly P&Ls var month_pnl = array.new_float(0) var month_time = array.new_int(0) var year_pnl = array.new_float(0) var year_time = array.new_int(0) last_computed = false if (not na(cur_month_pnl[1]) and (new_month or barstate.islast)) if (last_computed[1]) array.pop(month_pnl) array.pop(month_time) array.push(month_pnl , cur_month_pnl[1]) array.push(month_time, time[1]) if (not na(cur_year_pnl[1]) and (new_year or barstate.islast)) if (last_computed[1]) array.pop(year_pnl) array.pop(year_time) array.push(year_pnl , cur_year_pnl[1]) array.push(year_time, time[1]) last_computed := barstate.islast ? true : nz(last_computed[1]) // Monthly P&L Table var monthly_table = table(na) cell_hr_bg_color = results_dark ? #0F0F0F : #F5F5F5 cell_hr_text_color = results_dark ? #D3D3D3 : #555555 cell_border_color = results_dark ? #000000 : #FFFFFF // ell_hr_bg_color = results_dark ? #0F0F0F : #F5F5F5 // cell_hr_text_color = results_dark ? #D3D3D3 : #555555 // cell_border_color = results_dark ? #000000 : #FFFFFF if (barstate.islast) monthly_table := table.new(position.bottom_right, columns = 14, rows = array.size(year_pnl) + 1, bgcolor=cell_hr_bg_color,border_width=1,border_color=cell_border_color) table.cell(monthly_table, 0, 0, syminfo.tickerid + " " + timeframe.period, text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 1, 0, "Jan", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 2, 0, "Feb", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 3, 0, "Mar", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 4, 0, "Apr", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 5, 0, "May", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 6, 0, "Jun", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 7, 0, "Jul", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 8, 0, "Aug", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 9, 0, "Sep", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 10, 0, "Oct", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 11, 0, "Nov", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 12, 0, "Dec", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) table.cell(monthly_table, 13, 0, "Year", text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) for yi = 0 to array.size(year_pnl) - 1 table.cell(monthly_table, 0, yi + 1, str.tostring(year(array.get(year_time, yi))), text_color=cell_hr_text_color, bgcolor=cell_hr_bg_color) y_color = array.get(year_pnl, yi) > 0 ? color.lime : array.get(year_pnl, yi) < 0 ? color.red : color.gray table.cell(monthly_table, 13, yi + 1, str.tostring(math.round(array.get(year_pnl, yi) * 100, results_prec)), bgcolor = y_color) for mi = 0 to array.size(month_time) - 1 m_row = year(array.get(month_time, mi)) - year(array.get(year_time, 0)) + 1 m_col = month(array.get(month_time, mi)) m_color = array.get(month_pnl, mi) > 0 ? color.lime : array.get(month_pnl, mi) < 0 ? color.red : color.gray table.cell(monthly_table, m_col, m_row, str.tostring(math.round(array.get(month_pnl, mi) * 100, results_prec)), bgcolor = m_color) results_prec = input(2, title = "Precision", group="Results Table") results_dark = input.bool(defval=true, title="Dark Mode", group="Results Table") monthly_table(results_prec, results_dark)