Só uma simulação aproximada, para que todos tenham um conceito específico da quantidade de margens perdidas.
Veja primeiro o relatório original:https://www.fmz.com/digest-topic/5584e o relatório melhorado:https://www.fmz.com/digest-topic/5588
A estratégia tem sido compartilhada publicamente há 4 dias. O estágio inicial funcionou muito bem, com altos retornos e poucos retrações, de modo que muitos usuários estão usando uma alavancagem muito alta para apostar um retorno de 10% por dia. No entanto, como afirmado no relatório inicial, não há uma estratégia perfeita. Vender curto sobre tendência de alta e comprar longo sobre tendência de queda fazem uso das características das altcoins para subir e cair juntos. Se uma moeda sair de uma tendência única, ela acumulará muitas posições de detenção. embora uma média móvel tenha sido usada para rastrear o preço inicial, os riscos ainda existem. Este relatório quantifica principalmente os riscos específicos e por que o parâmetro recomendado trade_value representa 3% do total dos fundos.
A fim de destacar o código, colocamos em avançado desta parte, todos devem tentar primeiro executar o seguinte código (começando a partir da parte de bibliotecas de importação).
Para simular, assumimos que existem 20 moedas, mas só precisamos adicionar BTC e ETH, e usar BTC para representar 19 moedas com preços constantes.
Primeiro, simule a situação em que o preço de uma única moeda continua a subir. Stop_loss indica que o stop loss desvia. Aqui é apenas uma simulação. A situação real terá retração intermitente, não será tão ruim quanto a simulação.
Suponha que não haja retracement para esta moeda, quando o desvio de stop loss é de 0,41, o ETH subiu 44% neste momento, e os resultados finalmente se perderam 7 vezes do valor da negociação, ou seja, trade_value * 7. Se o trade_value for definido em 3% do total de fundos, então a perda = fundos totais * 0,03 * 7. O retracement máximo é de cerca de 0,03 * 7 = 21%.
Pode estimar a sua própria tolerância ao risco com base nos resultados abaixo.
btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [i/100. for i in range(100,500)] # Ethereum, up 1% in one cycle
for stop_loss in [i/1000. for i in range(10,1500,50)]:
e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
trade_value = 300 # 300 transactions
for i in range(200):
index = (btc_price[i]*19+eth_price[i])/20. # index
e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]})
diff_btc = btc_price[i] - index # deviation
diff_eth = eth_price[i] - index
btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])
aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
aim_eth_value = -trade_value*round(diff_eth/0.01,1)
if aim_btc_value - btc_value > 20:
e.Buy('BTC',btc_price[i],(aim_btc_value - btc_value)/btc_price[i])
if aim_eth_value - eth_value < -20 and diff_eth < stop_loss:
e.Sell('ETH',eth_price[i], (eth_value-aim_eth_value)/eth_price[i],diff_eth)
if diff_eth > stop_loss and eth_value < 0: # Stop loss
stop_price = eth_price[i]
e.Buy('ETH',eth_price[i], (-eth_value)/eth_price[i],diff_eth)
print('Currency price:',stop_price,' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 1.02 Stop loss deviation: 0.01 Final balance: 9968.840396 Multiple of losing trade volume: 0.1
Currency price: 1.07 Stop loss deviation: 0.06 Final balance: 9912.862738 Multiple of losing trade volume: 0.3
Currency price: 1.12 Stop loss deviation: 0.11 Final balance: 9793.616067 Multiple of losing trade volume: 0.7
Currency price: 1.17 Stop loss deviation: 0.16 Final balance: 9617.477263 Multiple of losing trade volume: 1.3
Currency price: 1.23 Stop loss deviation: 0.21 Final balance: 9337.527299 Multiple of losing trade volume: 2.2
Currency price: 1.28 Stop loss deviation: 0.26 Final balance: 9051.5166 Multiple of losing trade volume: 3.2
Currency price: 1.33 Stop loss deviation: 0.31 Final balance: 8721.285267 Multiple of losing trade volume: 4.3
Currency price: 1.38 Stop loss deviation: 0.36 Final balance: 8350.582251 Multiple of losing trade volume: 5.5
Currency price: 1.44 Stop loss deviation: 0.41 Final balance: 7856.720861 Multiple of losing trade volume: 7.1
Currency price: 1.49 Stop loss deviation: 0.46 Final balance: 7406.412066 Multiple of losing trade volume: 8.6
Currency price: 1.54 Stop loss deviation: 0.51 Final balance: 6923.898356 Multiple of losing trade volume: 10.3
Currency price: 1.59 Stop loss deviation: 0.56 Final balance: 6411.276143 Multiple of losing trade volume: 12.0
Currency price: 1.65 Stop loss deviation: 0.61 Final balance: 5758.736222 Multiple of losing trade volume: 14.1
Currency price: 1.7 Stop loss deviation: 0.66 Final balance: 5186.230956 Multiple of losing trade volume: 16.0
Currency price: 1.75 Stop loss deviation: 0.71 Final balance: 4588.802975 Multiple of losing trade volume: 18.0
Currency price: 1.81 Stop loss deviation: 0.76 Final balance: 3841.792751 Multiple of losing trade volume: 20.5
Currency price: 1.86 Stop loss deviation: 0.81 Final balance: 3193.215479 Multiple of losing trade volume: 22.7
Currency price: 1.91 Stop loss deviation: 0.86 Final balance: 2525.155765 Multiple of losing trade volume: 24.9
Currency price: 1.96 Stop loss deviation: 0.91 Final balance: 1837.699982 Multiple of losing trade volume: 27.2
Currency price: 2.02 Stop loss deviation: 0.96 Final balance: 988.009942 Multiple of losing trade volume: 30.0
Currency price: 2.07 Stop loss deviation: 1.01 Final balance: 260.639618 Multiple of losing trade volume: 32.5
Currency price: 2.12 Stop loss deviation: 1.06 Final balance: -483.509646 Multiple of losing trade volume: 34.9
Currency price: 2.17 Stop loss deviation: 1.11 Final balance: -1243.486107 Multiple of losing trade volume: 37.5
Currency price: 2.24 Stop loss deviation: 1.16 Final balance: -2175.438384 Multiple of losing trade volume: 40.6
Currency price: 2.28 Stop loss deviation: 1.21 Final balance: -2968.19255 Multiple of losing trade volume: 43.2
Currency price: 2.33 Stop loss deviation: 1.26 Final balance: -3774.613275 Multiple of losing trade volume: 45.9
Currency price: 2.38 Stop loss deviation: 1.31 Final balance: -4594.305499 Multiple of losing trade volume: 48.6
Currency price: 2.44 Stop loss deviation: 1.36 Final balance: -5594.651063 Multiple of losing trade volume: 52.0
Currency price: 2.49 Stop loss deviation: 1.41 Final balance: -6441.474964 Multiple of losing trade volume: 54.8
Currency price: 2.54 Stop loss deviation: 1.46 Final balance: -7299.652662 Multiple of losing trade volume: 57.7
Na simulação da situação de declínio contínuo, o declínio é acompanhado por uma diminuição no valor do contrato, de modo que o risco é maior do que o aumento, e à medida que o preço cai, a taxa de aumento das perdas está acelerando. Quando o valor do desvio de stop loss é -0,31, o preço da moeda cai em 33% neste momento, e uma perda de 6,5 transações. Se o valor do valor do comércio for definido em 3% dos fundos totais, o retração máxima é de cerca de 0,03 * 6,5 = 19,5%.
btc_price = [1]*500 # Bitcoin price, always unchanged
eth_price = [2-i/100. for i in range(100,200)] # Ethereum
for stop_loss in [-i/1000. for i in range(10,1000,50)]:
e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False)
trade_value = 300 # 300 transactions
for i in range(100):
index = (btc_price[i]*19+eth_price[i])/20. # index
e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]})
diff_btc = btc_price[i] - index # deviation
diff_eth = eth_price[i] - index
btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount'])
eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount'])
aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 # Here BTC replaces 19 currencies
aim_eth_value = -trade_value*round(diff_eth/0.01,1)
if aim_btc_value - btc_value < -20:
e.Sell('BTC',btc_price[i],-(aim_btc_value - btc_value)/btc_price[i])
if aim_eth_value - eth_value > 20 and diff_eth > stop_loss:
e.Buy('ETH',eth_price[i], -(eth_value-aim_eth_value)/eth_price[i],diff_eth)
if diff_eth < stop_loss and eth_value > 0:
e.Sell('ETH',eth_price[i], (eth_value)/eth_price[i],diff_eth)
stop_price = eth_price[i]
print('Currency price:',round(stop_price,2),' Stop loss deviation:', stop_loss,'Final balance:',e.df['total'].iloc[-1], ' Multiple of losing trade volume:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
Currency price: 0.98 Stop loss deviation: -0.01 Final balance: 9983.039091 Multiple of losing trade volume: 0.1
Currency price: 0.93 Stop loss deviation: -0.06 Final balance: 9922.200148 Multiple of losing trade volume: 0.3
Currency price: 0.88 Stop loss deviation: -0.11 Final balance: 9778.899361 Multiple of losing trade volume: 0.7
Currency price: 0.83 Stop loss deviation: -0.16 Final balance: 9545.316075 Multiple of losing trade volume: 1.5
Currency price: 0.77 Stop loss deviation: -0.21 Final balance: 9128.800213 Multiple of losing trade volume: 2.9
Currency price: 0.72 Stop loss deviation: -0.26 Final balance: 8651.260863 Multiple of losing trade volume: 4.5
Currency price: 0.67 Stop loss deviation: -0.31 Final balance: 8037.598952 Multiple of losing trade volume: 6.5
Currency price: 0.62 Stop loss deviation: -0.36 Final balance: 7267.230651 Multiple of losing trade volume: 9.1
Currency price: 0.56 Stop loss deviation: -0.41 Final balance: 6099.457595 Multiple of losing trade volume: 13.0
Currency price: 0.51 Stop loss deviation: -0.46 Final balance: 4881.767442 Multiple of losing trade volume: 17.1
Currency price: 0.46 Stop loss deviation: -0.51 Final balance: 3394.414792 Multiple of losing trade volume: 22.0
Currency price: 0.41 Stop loss deviation: -0.56 Final balance: 1575.135344 Multiple of losing trade volume: 28.1
Currency price: 0.35 Stop loss deviation: -0.61 Final balance: -1168.50508 Multiple of losing trade volume: 37.2
Currency price: 0.29 Stop loss deviation: -0.66 Final balance: -4071.007983 Multiple of losing trade volume: 46.9
Currency price: 0.25 Stop loss deviation: -0.71 Final balance: -7750.361195 Multiple of losing trade volume: 59.2
Currency price: 0.19 Stop loss deviation: -0.76 Final balance: -13618.366286 Multiple of losing trade volume: 78.7
Currency price: 0.14 Stop loss deviation: -0.81 Final balance: -20711.473968 Multiple of losing trade volume: 102.4
Currency price: 0.09 Stop loss deviation: -0.86 Final balance: -31335.965608 Multiple of losing trade volume: 137.8
Currency price: 0.04 Stop loss deviation: -0.91 Final balance: -51163.223715 Multiple of losing trade volume: 203.9
Currency price: 0.04 Stop loss deviation: -0.96 Final balance: -81178.565715 Multiple of losing trade volume: 303.9
# Libraries to import
import pandas as pd
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/20227de6c1d10cb9dd1.csv ', index_col = 0)
price_usdt.index = pd.to_datetime(price_usdt.index)
price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,]
price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0)
price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange:
def __init__(self, trade_symbols, leverage=20, commission=0.00005, initial_balance=10000, log=False):
self.initial_balance = initial_balance # Initial asset
self.commission = commission
self.leverage = leverage
self.trade_symbols = trade_symbols
self.date = ''
self.log = log
self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit'])
self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}}
for symbol in trade_symbols:
self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0}
def Trade(self, symbol, direction, price, amount, msg=''):
if self.date and self.log:
print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg))
cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
open_amount = amount - cover_amount
self.account['USDT']['realised_profit'] -= price*amount*self.commission # Minus handling fee
self.account['USDT']['fee'] += price*amount*self.commission
self.account[symbol]['fee'] += price*amount*self.commission
if cover_amount > 0: # close positions first
self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount # profit
self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage # Free margin
self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
self.account[symbol]['amount'] -= -direction*cover_amount
self.account[symbol]['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage
self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
if open_amount > 0:
total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
total_amount = direction*self.account[symbol]['amount']+open_amount
self.account['USDT']['margin'] += open_amount*price/self.leverage
self.account[symbol]['hold_price'] = total_cost/total_amount
self.account[symbol]['amount'] += direction*open_amount
self.account[symbol]['margin'] += open_amount*price/self.leverage
self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
self.account[symbol]['price'] = price
self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price
return True
def Buy(self, symbol, price, amount, msg=''):
self.Trade(symbol, 1, price, amount, msg)
def Sell(self, symbol, price, amount, msg=''):
self.Trade(symbol, -1, price, amount, msg)
def Update(self, date, close_price): # Update assets
self.date = date
self.close = close_price
self.account['USDT']['unrealised_profit'] = 0
for symbol in self.trade_symbols:
if np.isnan(close_price[symbol]):
continue
self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
self.account[symbol]['price'] = close_price[symbol]
self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage
self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]