Esta estratégia é baseada na teoria do nível de risco de Ben Cowen e visa implementar uma abordagem semelhante usando os níveis da faixa BEAM. O nível superior do BEAM é a média móvel de 200 semanas após tomar o logaritmo, e o nível inferior é a própria média móvel de 200 semanas. Isso nos dá uma faixa de 0 a 1.
A estratégia baseia-se principalmente na teoria da banda BEAM proposta por Ben Cowen. De acordo com as mudanças de preço do BTC
Quando o preço cai para os mínimos, a estratégia aumentará gradualmente a posição longa. Especificamente, se o preço estiver entre as faixas 0 e 0,5, as ordens de compra serão emitidas em um dia definido a cada mês. O valor da compra aumentará gradualmente à medida que o número de faixas diminuir. Por exemplo, com a faixa 5, o valor da compra é 20% do total mensal de DCA. Com a faixa 1, o valor da compra aumenta para 100% do total mensal de DCA.
Quando os preços sobem para altos, a estratégia reduzirá gradualmente sua posição. Especificamente, se o preço exceder a faixa 0,5, as ordens de venda serão emitidas proporcionalmente. A posição de venda aumentará gradualmente à medida que o número de bandas aumenta. Por exemplo, com a faixa 6, 6,7% serão vendidas. Com a faixa 10, todas as posições serão vendidas.
A maior vantagem desta estratégia de DCA de banda BEAM é que ela utiliza plenamente as características de volatilidade da negociação de BTC pela pesca de fundo quando os preços caem para o seu nível mais baixo e obtendo lucro quando os preços sobem para seus picos.
Em resumo, esta é uma estratégia sofisticada de ajuste de parâmetros que pode gerar retornos constantes a longo prazo em condições flutuantes do mercado de BTC.
Embora a estratégia DCA de banda BEAM apresente muitas vantagens, existem ainda alguns riscos potenciais a tomar em consideração.
Para mitigar os riscos, podem ser tomadas as seguintes medidas:
Tendo em conta os riscos acima referidos, a otimização desta estratégia pode centrar-se em:
Através destas medidas, a estabilidade e a segurança da estratégia podem ser consideravelmente melhoradas.
A estratégia de custo médio da banda BEAM DCA é uma estratégia quantitativa de negociação altamente prática. Ela aproveita com sucesso a teoria BEAM para guiar as decisões de negociação, complementada por um modelo de média de custos para controlar os custos de compra. Ao mesmo tempo, presta atenção à gestão de riscos, definindo pontos de stop loss para evitar a expansão de perdas. Com otimização de parâmetros e adições modulares, essa estratégia pode se tornar uma ferramenta importante para a negociação quantitativa para obter retornos constantes a longo prazo do mercado BTC. Merece mais pesquisa e aplicação por profissionais de negociação quantitativa.
/*backtest start: 2023-02-11 00:00:00 end: 2024-02-17 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // © gjfsdrtytru - BEAM DCA Strategy { // Based on Ben Cowen's risk level strategy, this aims to copy that method but with BEAM band levels. // Upper BEAM level is derived from ln(price/200W MA)/2.5, while the 200W MA is the floor price. This is our 0-1 range. // Buy limit orders are set at the < 0.5 levels and sell orders are set at the > 0.5 level. //@version=5 strategy( title = "BEAM DCA Strategy Monthly", shorttitle = "BEAM DCA M", overlay = true, pyramiding = 500, default_qty_type = strategy.percent_of_equity, default_qty_value = 0, initial_capital = 0) //} // Inputs { ———————————————————————————————————————————————————————————————————— T_ceiling = input.string("Off", "Diminishing Returns", ["Off","Linear","Parabolic"], "Account for diminishing returns as time increases") day = input.int(1, "DCA Day of Month",1,28,1,"Select day of month for buy orders.") DCAamount = input.int(1000,"DCA Amount",400,tooltip="Enter the maximum amount you'd be willing to DCA for any given month.") T_buy = input(true,"Buy Orders","Toggle buy orders.") T_sell = input(true,"Sell Orders","Toggle sell orders.") // Time period testStartYear = input.int(2018, title="Backtest Start Year", minval=2010,maxval=2100,group="Backtest Period") testStartMonth = input.int(1, title="Backtest Start Month", minval=1, maxval=12, group="Backtest Period") testStartDay = input.int(1, title="Backtest Start Day", minval=1, maxval=31, group="Backtest Period") testPeriodLen = input.int(9999, title="Backtest Period (days)", minval=1, group="Backtest Period",tooltip="Days until strategy ends") * 86400000 // convert days into UNIX time testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) testPeriodStop = testPeriodStart + testPeriodLen testPeriod() => true // ——————————————————————————————————————————————————————————————————————————— } // Diminishing Returns { ——————————————————————————————————————————————————————— x = bar_index + 1 assetDivisor= 2.5 switch T_ceiling == "Linear" => assetDivisor:= 3.50542 - 0.000277696 * x T_ceiling == "Parabolic"=> assetDivisor:= -0.0000001058992338 * math.pow(x,2) + 0.000120729 * x + 3.1982 // ——————————————————————————————————————————————————————————————————————————— } // Risk Levels { ——————————————————————————————————————————————————————————————— cycleLen = 1400 getMaLen() => if bar_index < cycleLen bar_index + 1 else cycleLen // Define Risk Bands price = close riskLow = ta.sma(price,getMaLen()) risk1 = riskLow * math.exp((assetDivisor)*0.1) risk2 = riskLow * math.exp((assetDivisor)*0.2) risk3 = riskLow * math.exp((assetDivisor)*0.3) risk4 = riskLow * math.exp((assetDivisor)*0.4) risk5 = riskLow * math.exp((assetDivisor)*0.5) risk6 = riskLow * math.exp((assetDivisor)*0.6) risk7 = riskLow * math.exp((assetDivisor)*0.7) risk8 = riskLow * math.exp((assetDivisor)*0.8) risk9 = riskLow * math.exp((assetDivisor)*0.9) riskHigh = riskLow * math.exp((assetDivisor)) // Plot Risk Bands p_low = plot(riskLow, "Beam Risk 0.0",color.new(#0042F0,50),3,editable=false) p_band1 = plot(risk1, "Beam Risk 0.1",color.new(#0090F5,20),1,editable=false) p_band2 = plot(risk2, "Beam Risk 0.2",color.new(#00C6DB,20),1,editable=false) p_band3 = plot(risk3, "Beam Risk 0.3",color.new(#00F5BD,20),1,editable=false) p_band4 = plot(risk4, "Beam Risk 0.4",color.new(#00F069,20),1,editable=false) p_band5 = plot(risk5, "Beam Risk 0.5",color.new(#00DB08,50),3,editable=false) p_band6 = plot(risk6, "Beam Risk 0.6",color.new(#E8D20C,20),1,editable=false) p_band7 = plot(risk7, "Beam Risk 0.7",color.new(#F2B40C,20),1,editable=false) p_band8 = plot(risk8, "Beam Risk 0.8",color.new(#DC7A00,20),1,editable=false) p_band9 = plot(risk9, "Beam Risk 0.9",color.new(#F2520C,20),1,editable=false) p_band10 = plot(riskHigh, "Beam Risk 1.0",color.new(#F01102,50),3,editable=false) // ——————————————————————————————————————————————————————————————————————————— } // Order Execution { ——————————————————————————————————————————————————————————— band5 = price<risk5 and price>risk4 band4 = price<risk4 and price>risk3 band3 = price<risk3 and price>risk2 band2 = price<risk2 and price>risk1 band1 = price<risk1 // DCA buy order weights y = DCAamount / 5 switch band5 => y:= y * 1 band4 => y:= y * 2 band3 => y:= y * 3 band2 => y:= y * 4 band1 => y:= y * 5 // Contracts per order contracts =(y/price) if testPeriod() // Buy orders if T_buy == true if dayofmonth == day strategy.entry("Risk Band 5",strategy.long,qty=contracts,when=band5) strategy.entry("Risk Band 4",strategy.long,qty=contracts,when=band4) strategy.entry("Risk Band 3",strategy.long,qty=contracts,when=band3) strategy.entry("Risk Band 2",strategy.long,qty=contracts,when=band2) strategy.entry("Risk Band 1",strategy.long,qty=contracts,when=band1) // Sell orders if T_sell == true if strategy.opentrades > 5 strategy.exit("Risk Band 6",qty_percent=6.67,limit=risk6) strategy.exit("Risk Band 7",qty_percent=14.28,limit=risk7) strategy.exit("Risk Band 8",qty_percent=25.00,limit=risk8) strategy.exit("Risk Band 9",qty_percent=44.44,limit=risk9) strategy.exit("Risk Band 10",qty_percent=100,limit=riskHigh) // ——————————————————————————————————————————————————————————————————————————— } // Info { —————————————————————————————————————————————————————————————————————— // Line plot of avg. entry price plot(strategy.position_size > 0 ? strategy.position_avg_price : na,"Average Entry",color.red,trackprice=true,editable=false) // Unrealised PNL uPNL = price/strategy.position_avg_price // Realised PNL realPNL = 0. for i = 0 to strategy.closedtrades-1 realPNL += strategy.closedtrades.profit(i) // Size of open position in ($) openPosSize = 0. for i = 0 to strategy.opentrades-1 openPosSize += strategy.opentrades.size(i) * strategy.position_avg_price // Size of closed position in ($) closePosSize = 0. if strategy.closedtrades > 0 for i = 0 to strategy.closedtrades-1 closePosSize += strategy.closedtrades.size(i) * strategy.closedtrades.entry_price(i) invested = openPosSize+closePosSize // Total capital ($) put into strategy equity = openPosSize+closePosSize+strategy.openprofit+realPNL // Total current equity ($) in strategy (counting realised PNL) ROI = (equity-invested) / invested * 100 // ROI of strategy (compare capital invested to excess return) // // Info Table // var table table1 = table.new(position.bottom_right,2,9,color.black,color.gray,1,color.gray,2) // table.cell(table1,0,0,"Capital Invested", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,1,"Open Position", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,2,"Average Entry", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,3,"Last Price", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,4,"Open PNL (%)", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,5,"Open PNL ($)", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,6,"Realised PNL ($)", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,7,"Total Equity", text_color=color.white,text_halign=text.align_right) // table.cell(table1,0,8,"Strategy ROI", text_color=color.white,text_halign=text.align_right) // table.cell(table1,1,0,"$" + str.tostring(invested, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,1,"$" + str.tostring(openPosSize, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,2,"$" + str.tostring(strategy.position_avg_price, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,3,"$" + str.tostring(price, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,4, str.tostring((uPNL-1)*100, "#,###.00") + "%",text_halign=text.align_right,text_color = uPNL > 1 ? color.lime : color.red) // table.cell(table1,1,5,"$" + str.tostring(strategy.openprofit, "#,###.00"), text_halign=text.align_right,text_color = uPNL > 1 ? color.lime : color.red) // table.cell(table1,1,6,"$" + str.tostring(realPNL, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,7,"$" + str.tostring(equity, "#,###.00"), text_halign=text.align_right,text_color = color.white) // table.cell(table1,1,8, str.tostring(ROI, "#,###.00") + "%",text_halign=text.align_right,text_color = ROI > 1 ? color.lime : color.red) // // ——————————————————————————————————————————————————————————————————————————— }