Эта стратегия является адаптивной сетевой торговой стратегией, основанной на количественных торговых платформах. Она устанавливает автоматические или ручные торговые диапазоны сетки и размещает заказы на покупку и продажу с равными интервалами в пределах диапазона для реализации сетевой торговли. Когда цена проходит через верхний или нижний предел сетки, стратегия автоматически корректирует диапазон сетки.
Установка верхних и нижних предельных цен для сети. автоматически рассчитывать цены в определенном интервале от самых высоких и самых низких исторических цен в качестве верхних и нижних пределов, или вручную установить фиксированные верхние и нижние предельные цены.
Вычислить интервал цен для каждой сети на основе верхней и нижней предельных цен и количества сетей.
Разместите несколько точек покупки и продажи с равными интервалами между верхними и нижними предельными ценами в виде сетки.
Когда рыночная цена проходит нижнюю границу сетки, разместить ордер на покупку в следующей сетке ниже сетки, где находится последний незавершенный ордер; когда рыночная цена проходит верхнюю границу сетки, разместить ордер на продажу в сетке выше сетки, где находится последний незавершенный ордер.
Таким образом, продолжайте операции по покупке и продаже в верхних и нижних границах сетки.
Торговля сетями может приносить прибыль на рынках с ограниченным диапазоном и колеблющимися.
Адаптивная регулировка диапазона сети может автоматически регулироваться на основе колебаний рынка без ручного вмешательства.
Сумма капитальных вложений может быть заранее установлена для распределения рисков между сетями.
Логика проста и понятна, а параметры гибкие для корректировки.
Прорыв верхнего и нижнего пределов может привести к потерям
Тенденционные рынки могут привести к повторным потерям
Неправильные параметры
Использование машинного обучения для прогнозирования диапазона колебаний цен и тенденций для динамической корректировки параметров сети.
Переключение на трендовую торговлю на трендовых рынках, чтобы избежать потерь в торговле сетью.
Включить меры по контролю рисков, основанные на уровне использования капитала, уровне доходности и т.д.
Диверсификация активов для увеличения использования капитала.
Эта стратегия является адаптивной сетевой стратегией с автоматически регулируемыми параметрами, подходящей для акций, криптовалют и валютных продуктов с колеблющимися и диапазоном движений.
/*backtest start: 2024-01-01 00:00:00 end: 2024-01-24 23:59:59 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //hk4jerry strategy("Grid Bot Backtesting", overlay=false, pyramiding=3000, close_entries_rule="ANY", default_qty_type=strategy.cash, initial_capital=100.0, currency="USD", commission_type=strategy.commission.percent, commission_value=0.025) i_autoBounds = input(group="Grid Bounds", title="Use Auto Bounds?", defval=true, type=input.bool) // calculate upper and lower bound of the grid automatically? This will theorhetically be less profitable, but will certainly require less attention i_boundSrc = input(group="Grid Bounds", title="(Auto) Bound Source", defval="Hi & Low", options=["Hi & Low", "Average"]) // should bounds of the auto grid be calculated from recent High & Low, or from a Simple Moving Average i_boundLookback = input(group="Grid Bounds", title="(Auto) Bound Lookback", defval=250, type=input.integer, maxval=500, minval=0) // when calculating auto grid bounds, how far back should we look for a High & Low, or what should the length be of our sma i_boundDev = input(group="Grid Bounds", title="(Auto) Bound Deviation", defval=0.10, type=input.float, maxval=1, minval=-1) // if sourcing auto bounds from High & Low, this percentage will (positive) widen or (negative) narrow the bound limits. If sourcing from Average, this is the deviation (up and down) from the sma, and CANNOT be negative. i_upperBound = input(group="Grid Bounds", title="(Manual) Upper Boundry(상단 가격)", defval=0.285, type=input.float) // for manual grid bounds only. The upperbound price of your grid i_lowerBound = input(group="Grid Bounds", title="(Manual) Lower Boundry(하단 가격)", defval=0.225, type=input.float) // for manual grid bounds only. The lowerbound price of your grid. i_gridQty = input(group="Grid Lines", title="Grid Line Quantity(그리드 수)", defval=30, maxval=999, minval=1, type=input.integer) // how many grid lines are in your grid initial_balance = input(group="Trading option", title="Initial balance(투자금액)", defval=100, step=0.01) start_time = input(group="Trading option",defval=timestamp('15 March 2023 06:00'), title='Start Time', type = input.time) end_time = input(group="Trading option",defval=timestamp('31 Dec 2035 20:00'), title='End Time', type = input.time) isAfterStartDate = true tradingtime= (timenow - start_time)/(86400000*30) yeartime=tradingtime/12 f_getGridBounds(_bs, _bl, _bd, _up) => if _bs == "Hi & Low" _up ? highest(close, _bl) * (1 + _bd) : lowest(close, _bl) * (1 - _bd) else avg = sma(close, _bl) _up ? avg * (1 + _bd) : avg * (1 - _bd) f_buildGrid(_lb, _gw, _gq) => gridArr = array.new_float(0) for i=0 to _gq-1 array.push(gridArr, _lb+(_gw*i)) gridArr f_getNearGridLines(_gridArr, _price) => arr = array.new_int(3) for i = 0 to array.size(_gridArr)-1 if array.get(_gridArr, i) > _price array.set(arr, 0, i == array.size(_gridArr)-1 ? i : i+1) array.set(arr, 1, i == 0 ? i : i-1) break arr var upperBound = i_autoBounds ? f_getGridBounds(i_boundSrc, i_boundLookback, i_boundDev, true) : i_upperBound // upperbound of our grid var lowerBound = i_autoBounds ? f_getGridBounds(i_boundSrc, i_boundLookback, i_boundDev, false) : i_lowerBound // lowerbound of our grid var gridWidth = (upperBound - lowerBound)/(i_gridQty-1) // space between lines in our grid var gridLineArr = f_buildGrid(lowerBound, gridWidth, i_gridQty) // an array of prices that correspond to our grid lines var orderArr = array.new_bool(i_gridQty, false) // a boolean array that indicates if there is an open order corresponding to each grid line var closeLineArr = f_getNearGridLines(gridLineArr, close) // for plotting purposes - an array of 2 indices that correspond to grid lines near price var nearTopGridLine = array.get(closeLineArr, 0) // for plotting purposes - the index (in our grid line array) of the closest grid line above current price var nearBotGridLine = array.get(closeLineArr, 1) // for plotting purposes - the index (in our grid line array) of the closest grid line below current price if isAfterStartDate for i = 0 to (array.size(gridLineArr) - 1) if close < array.get(gridLineArr, i) and not array.get(orderArr, i) and i < (array.size(gridLineArr) - 1) buyId = i array.set(orderArr, buyId, true) strategy.entry(id=tostring(buyId), long=true, qty=(initial_balance/(i_gridQty-1))/close, comment="#"+tostring(buyId)) if close > array.get(gridLineArr, i) and i != 0 if array.get(orderArr, i-1) sellId = i-1 array.set(orderArr, sellId, false) strategy.close(id=tostring(sellId), comment="#"+tostring(sellId)) if i_autoBounds upperBound := f_getGridBounds(i_boundSrc, i_boundLookback, i_boundDev, true) lowerBound := f_getGridBounds(i_boundSrc, i_boundLookback, i_boundDev, false) gridWidth := (upperBound - lowerBound)/(i_gridQty-1) gridLineArr := f_buildGrid(lowerBound, gridWidth, i_gridQty) closeLineArr := f_getNearGridLines(gridLineArr, close) nearTopGridLine := array.get(closeLineArr, 0) nearBotGridLine := array.get(closeLineArr, 1) var table table = table.new(position.top_right,6,8, frame_color = color.rgb(255, 255, 255),frame_width = 2,border_width = 2, border_color=color.rgb(255, 255, 255)) //제목 table.cell(table,0,0,"상단 라인 :", bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,0,1,"하단 라인 :",bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,0,2,"그리드 수 :",bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,0,3,"투자금액 :",text_color =color.white,bgcolor=color.new(color.black,0)) table.cell(table,0,4,"그리드당 투자금액 :",text_color =color.white,bgcolor=color.new(color.black,0)) //수치 table.cell(table,1,0, tostring(upperBound, '###.#####')+ " USDT", bgcolor=color.new(#5a637e, 0),text_color =color.white) table.cell(table,1,1, tostring(lowerBound, '###.#####')+ " USDT", bgcolor=color.new(#5a637e, 0),text_color =color.white) table.cell(table,1,2, tostring(i_gridQty, '###'), bgcolor=color.new(#5a637e, 0),text_color =color.white) table.cell(table,1,3, tostring(initial_balance,'###.##')+ " USDT", bgcolor=color.new(#5a637e, 0),text_color =color.white) table.cell(table,1,4, tostring(initial_balance/i_gridQty,'###.##')+ " USDT", bgcolor=color.new(#5a637e, 0),text_color =color.white) //제목 table.cell(table,2,0,"현재 포지션 :",text_color =color.white,bgcolor=color.new(color.black,0)) table.cell(table,2,1,"현재 포지션 평단가 :",text_color =color.white,bgcolor=color.new(color.black,0)) table.cell(table,2,2,"현재 포지션 수익 :",bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,2,3,"현재 포지션 수익 % :",bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,2,4,"현재 포지션 수수료 :",text_color =color.white,bgcolor=color.new(color.black,0)) //수치 table.cell(table,3,0, tostring(strategy.position_size) + syminfo.basecurrency + "\n" + tostring(strategy.position_size*strategy.position_avg_price/1, '###.##') + "USDT" ,text_color =color.white,bgcolor=color.new(#5a637e, 0)) table.cell(table,3,1, text=strategy.position_size>0 ? tostring(strategy.position_avg_price,'###.####')+ " USDT" : "NOT TRADING",text_color =color.white,bgcolor=color.new(#5a637e, 0)) table.cell(table,3,2, tostring(strategy.openprofit, '###.##')+ " USDT",text_color =color.white,bgcolor=strategy.openprofit > 0 ? color.teal : color.maroon) table.cell(table,3,3, tostring(strategy.openprofit/initial_balance*100, '###.##')+ "%",text_color =color.white,bgcolor=strategy.openprofit > 0 ? color.teal : color.maroon) table.cell(table,3,4, "-" + tostring(strategy.position_avg_price*strategy.position_size*0.025/100,'###.##')+ " USDT",text_color =color.white,bgcolor=color.new(#5a637e, 0)) //제목 table.cell(table,4,0,"그리드 수익 :",text_color =color.white,bgcolor=color.new(color.black,0)) table.cell(table,4,1,"그리드 수익률 :",text_color =color.white,bgcolor=color.new(color.black,0)) table.cell(table,4,2,"총 수익 :", bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,4,3,"총 수익률 :",bgcolor=color.new(color.black,0),text_color =color.white) table.cell(table,4,4,"현재 자산 :",bgcolor=color.new(color.black,0),text_color =color.white) //수치 table.cell(table,5,0, tostring(strategy.netprofit, '###.#####')+ "USDT", text_color =color.white,bgcolor=strategy.netprofit > 0 ? color.teal : color.maroon) table.cell(table,5,1, tostring((strategy.netprofit)/initial_balance*100/tradingtime, '####.##') + "%",text_color =color.white,bgcolor=strategy.netprofit > 0 ? color.teal : color.maroon) table.cell(table,5,2, tostring(strategy.netprofit+strategy.openprofit, '###.##') + " USDT",text_color =color.white,bgcolor=strategy.netprofit+strategy.openprofit > 0 ? color.teal : color.maroon) table.cell(table,5,3, tostring((strategy.netprofit+strategy.openprofit)/initial_balance*100, '####.##') + "%",text_color =color.white,bgcolor=strategy.netprofit+strategy.openprofit > 0 ? color.teal : color.maroon) table.cell(table,5,4, tostring(initial_balance+strategy.netprofit+strategy.openprofit, '###.##')+ " USDT", text_color =color.white,bgcolor=color.new(#3d4d7c, 0)) // plot(strategy.initial_capital+ strategy.netprofit+strategy.openprofit, "총 수익 USDT",color=color.rgb(81, 137, 128)) // plot(initial_balance, "투자금액",color=color.rgb(81, 137, 128))