量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
定量投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于定量投资管理是“定性思想的量化应用”,更加强调数据。量化交易具有以下几个方面的特点:
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
量化策略是指使用计算机作为工具,通过一套固定的逻辑来分析、判断和决策。量化策略既可以自动执行,也可以人工执行。 一个完整的量化策略包含哪些内容? 一个完整的策略需要包含输入、策略处理逻辑、输出;策略处理逻辑需要考虑选股、择时、仓位管理和止盈止损等因素。
选股 量化选股就是用量化的方法选择确定的投资组合,期望这样的投资组合可以获得超越大盘的投资收益。常用的选股方法有多因子选股、行业轮动选股、趋势跟踪选股等。
择时 量化择时是指采用量化的方式判断买入卖出点。如果判断是上涨,则买入持有;如果判断是下跌,则卖出清仓;如果判断是震荡,则进行高抛低吸。 常用的择时方法有:趋势量化择时、市场情绪量化择时、有效资金量化择时、SVM量化择时等。
仓位管理 仓位管理就是在你决定投资某个股票组合时,决定如何分批入场,又如何止盈止损离场的技术。 常用的仓位管理方法有:漏斗型仓位管理法、矩形仓位管理法、金字塔形仓位管理法等
止盈止损 止盈,顾名思义,在获得收益的时候及时卖出,获得盈利;止损,在股票亏损的时候及时卖出股票,避免更大的损失。 及时的止盈止损是获取稳定收益的有效方式。
策略的生命周期 一个策略往往会经历产生想法、实现策略、检验策略、运行策略、策略失效几个阶段。
产生想法 任何人任何时间都可能产生一个策略想法,可以根据自己的投资经验,也可以根据他人的成功经验。
实现策略 产生想法到实现策略是最大的跨越,实现策略可以参照上文提到的“一个完整的量化策略包含哪些内容?”
检验策略 策略实现之后,需要通过历史数据的回测和模拟交易的检验,这也是实盘前的关键环节,筛选优质的策略,淘汰劣质的策略。
实盘交易 投入资金,通过市场检验策略的有效性,承担风险,赚取收益。
策略失效 市场是千变万化的,需要实时监控策略的有效性,一旦策略失效,需要及时停止策略或进一步优化策略。
量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是目前量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。[1]
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。
teacherMa 牛逼了 弟弟
gaojinha OK
一叶行知 nice!
McGee !!!
indexroot GOOD
:) 201807140321